On a p-Kirchhoff problem involving a critical nonlinearity

2014 ◽  
Vol 352 (4) ◽  
pp. 295-298 ◽  
Author(s):  
Anass Ourraoui
2017 ◽  
Vol 8 (1) ◽  
pp. 645-660 ◽  
Author(s):  
Alessio Fiscella

Abstract In this paper, we consider the following critical nonlocal problem: \left\{\begin{aligned} &\displaystyle M\bigg{(}\iint_{\mathbb{R}^{2N}}\frac{% \lvert u(x)-u(y)\rvert^{2}}{\lvert x-y\rvert^{N+2s}}\,dx\,dy\biggr{)}(-\Delta)% ^{s}u=\frac{\lambda}{u^{\gamma}}+u^{2^{*}_{s}-1}&&\displaystyle\phantom{}\text% {in }\Omega,\\ \displaystyle u&\displaystyle>0&&\displaystyle\phantom{}\text{in }\Omega,\\ \displaystyle u&\displaystyle=0&&\displaystyle\phantom{}\text{in }\mathbb{R}^{% N}\setminus\Omega,\end{aligned}\right. where Ω is an open bounded subset of {\mathbb{R}^{N}} with continuous boundary, dimension {N>2s} with parameter {s\in(0,1)} , {2^{*}_{s}=2N/(N-2s)} is the fractional critical Sobolev exponent, {\lambda>0} is a real parameter, {\gamma\in(0,1)} and M models a Kirchhoff-type coefficient, while {(-\Delta)^{s}} is the fractional Laplace operator. In particular, we cover the delicate degenerate case, that is, when the Kirchhoff function M is zero at zero. By combining variational methods with an appropriate truncation argument, we provide the existence of two solutions.


1999 ◽  
Vol 163 (1) ◽  
pp. 29-62 ◽  
Author(s):  
Mohameden O. Ahmedou ◽  
Khalil O. El Mehdi

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Hafid Lebrimchi ◽  
Mohamed Talbi ◽  
Mohammed Massar ◽  
Najib Tsouli

In this article, we study the existence of solutions for nonlocal p x -biharmonic Kirchhoff-type problem with Navier boundary conditions. By different variational methods, we determine intervals of parameters for which this problem admits at least one nontrivial solution.


Sign in / Sign up

Export Citation Format

Share Document