Supercyclic C0-semigroups, stability and somewhere dense orbits

2019 ◽  
Vol 476 (2) ◽  
pp. 539-548 ◽  
Author(s):  
Abhay Kumar ◽  
Sachi Srivastava
Keyword(s):  
2017 ◽  
Vol 28 (10) ◽  
pp. 1750073 ◽  
Author(s):  
Thierry Giordano ◽  
Daniel Gonçalves ◽  
Charles Starling

Let [Formula: see text] and [Formula: see text] be open subsets of the Cantor set with nonempty disjoint complements, and let [Formula: see text] be a homeomorphism with dense orbits. Building on the ideas of Herman, Putnam and Skau, we show that the partial action induced by [Formula: see text] can be realized as the Vershik map on an ordered Bratteli diagram, and that any two such diagrams are equivalent.


2020 ◽  
Vol 7 (1) ◽  
pp. 163-175
Author(s):  
Mehdi Pourbarat

AbstractWe study the theory of universality for the nonautonomous dynamical systems from topological point of view related to hypercyclicity. The conditions are provided in a way that Birkhoff transitivity theorem can be extended. In the context of generalized linear nonautonomous systems, we show that either one of the topological transitivity or hypercyclicity give sensitive dependence on initial conditions. Meanwhile, some examples are presented for topological transitivity, hypercyclicity and topological conjugacy.


2008 ◽  
Vol 60 (5) ◽  
pp. 1001-1009 ◽  
Author(s):  
Yves de Cornulier ◽  
Romain Tessera ◽  
Alain Valette

AbstractOur main result is that a finitely generated nilpotent group has no isometric action on an infinite-dimensional Hilbert space with dense orbits. In contrast, we construct such an action with a finitely generated metabelian group.


2018 ◽  
Vol 40 (4) ◽  
pp. 1083-1107
Author(s):  
WEISHENG WU

Let$g:M\rightarrow M$be a$C^{1+\unicode[STIX]{x1D6FC}}$-partially hyperbolic diffeomorphism preserving an ergodic normalized volume on$M$. We show that, if$f:M\rightarrow M$is a$C^{1+\unicode[STIX]{x1D6FC}}$-Anosov diffeomorphism such that the stable subspaces of$f$and$g$span the whole tangent space at some point on$M$, the set of points that equidistribute under$g$but have non-dense orbits under$f$has full Hausdorff dimension. The same result is also obtained when$M$is the torus and$f$is a toral endomorphism whose center-stable subspace does not contain the stable subspace of$g$at some point.


Author(s):  
K. M. Brucks ◽  
B. Diamond ◽  
M. V. Otero-Espinar ◽  
C. Tresser

1993 ◽  
Vol 117 (4) ◽  
pp. 1201-1201 ◽  
Author(s):  
Michael D. Boshernitzan
Keyword(s):  

2014 ◽  
Vol 200 (1) ◽  
pp. 327-341
Author(s):  
H. Abels ◽  
A. Manoussos
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document