scholarly journals Characterization of the interface between ceramics reinforcement and lead-free solder matrix

2020 ◽  
Vol 20 ◽  
pp. 100576 ◽  
Author(s):  
Manoj Kumar Pal ◽  
Gréta Gergely ◽  
Dániel Koncz-Horváth ◽  
Zoltán Gácsi
2020 ◽  
Author(s):  
Manoj Kumar Pal ◽  
Gréta Gergely ◽  
Dániel Koncz-Horváth ◽  
Zoltán Gácsi

Abstract The Sn-3.0Ag-0.5Cu solder alloy is a prominent candidate for the Pb-free solder, and SAC305 solder is generally employed in today’s electronic enterprise. In this study, the formation of intermetallic compounds (Cu6Sn5 and Ag3Sn) at the interface, average neighbour’s particle distance, and the morphological mosaic are examined by the addition of SiC and nickel-coated silicon carbide reinforcements within Sn-3.0Ag-0.5Cu solder. Results revealed that the addition of SiC and SiC(Ni) particles are associated with a small change to the average neighbor’s particle distance and a decrease of clustering rate to a certain limit of the Sn-3.0Ag-0.5Cu solder composites. Moreover, the development of the Cu6Sn5 and the structure of the Ag3Sn are improved with the addition of SiC and Ni coated SiC.


2015 ◽  
Vol 830-831 ◽  
pp. 265-269
Author(s):  
Satyanarayan ◽  
K.N. Prabhu

In the present work, the bond strength of Sn-0.7Cu, Sn-0.3Ag-0.7Cu, Sn-2.5Ag-0.5Cu and Sn-3Ag-0.5Cu lead free solders solidified on Cu substrates was experimentally determined. The bond shear test was used to assess the integrity of Sn–Cu and Sn–Ag–Cu lead-free solder alloy drops solidified on smooth and rough Cu substrate surfaces. The increase in the surface roughness of Cu substrates improved the wettability of solders. The wettability was not affected by the Ag content of solders. Solder bonds on smooth surfaces yielded higher shear strength compared to rough surfaces. Fractured surfaces revealed the occurrence of ductile mode of failure on smooth Cu surfaces and a transition ridge on rough Cu surfaces. Though rough Cu substrate improved the wettability of solder alloys, solder bonds were sheared at a lower force leading to decreased shear energy density compared to the smooth Cu surface. A smooth surface finish and the presence of minor amounts of Ag in the alloy improved the integrity of the solder joint. Smoother surface is preferable as it favors failure in the solder matrix.


2020 ◽  
pp. 2000123
Author(s):  
Manoj Kumar Pal ◽  
Gréta Gergely ◽  
Dániel Koncz-Horváth ◽  
Zoltán Gácsi

2003 ◽  
Vol 15 (2) ◽  
pp. 22-27 ◽  
Author(s):  
David Geiger ◽  
Fredrik Mattsson ◽  
Dongkai Shangguan ◽  
MT Ong ◽  
Patrick Wong ◽  
...  

Author(s):  
Yuvraj Singh ◽  
Anirudh Udupa ◽  
Srinivasan Chandrasekar ◽  
Ganesh Subbarayan

Abstract Studies on medium to high strain-rate characterization (≥ 0.1s−1) of lead-free solder are relatively few, primarily due to the lack of available methods for testing. Prior work in literature uses Split Hopkinson Bar (SPHB) experiments for high strain-rate characterization (≥ 300s−1) [1,2], while a modified micro-scale tester is used for medium strain-rate characterization (0.005s−1 to 300s−1) [3] and an impact hammer test setup for testing in a strain-rate regime from 1s−1 to 100s−1 [4]. However, there is still limited data in strain-rate regimes of relevance, specifically for drop shock applications. In this paper, we present orthogonal metal cutting as a novel method to characterize lead-free solder alloys. Experiments are carried out using a wedgelike tool that cuts through a work piece at a fixed depth and rake angle while maintaining a constant cutting velocity. These experiments are conducted at room temperature on Sn1.0Ag0.5Cu bulk test specimens with strain-rates varying from 0.32 to 48s−1. The range of strain-rates is only limited by the ball screw driven slide allowing higher strain-rates if needed. The strains and strain-rates are captured through Particle Image Velocimetry (PIV) using sequential images taken from a high-speed camera just ahead of the cutting tool. The PIV enables non-contact recording of high strain-rate deformations, while the dynamometer on the cutting head allows one to capture the forces exerted during the cutting process. Results for the stress-strain response obtained through the experiments are compared to prior work for validation. Orthogonal metal cutting is shown to be a potentially attractive method for characterization of solder at higher strain-rates.


Sign in / Sign up

Export Citation Format

Share Document