Tracking innovation diffusion: AI analysis of large-scale patent data towards an agenda for further research

2021 ◽  
Vol 165 ◽  
pp. 120524
Author(s):  
Ashkan Fredström ◽  
Joakim Wincent ◽  
David Sjödin ◽  
Pejvak Oghazi ◽  
Vinit Parida
Radiocarbon ◽  
2014 ◽  
Vol 56 (02) ◽  
pp. 723-732 ◽  
Author(s):  
Fabio Silva ◽  
James Steele ◽  
Kevin Gibbs ◽  
Peter Jordan

This article introduces a method of exploratory analysis of the geographical factors influencing large-scale innovation diffusion, and illustrates its application to the case of early pottery dispersal in the Old World. Regression techniques are used to identify broad-scale spatiotemporal trends in the innovation's first occurrence, and regression residuals are then analyzed to identify geographical variation (climate, biomes) that may have influenced local rates of diffusion. The boundaries between the modeled diffusion zones segregate the western half of the map into a Eurasian hunter-gatherer pottery-using zone affiliated by cultural descent to the Siberian center of innovation, and a lower-latitude farming and pastoralist zone affiliated by cultural descent to the north African center of innovation. However, the correlation coefficients suggest that this baseline model has limited explanatory power, with geographical patterning in the residuals indicating that habitat also greatly affected rates of spread of the new technology. Earlier-than-predicted ages for early pottery tend to occur in locations with mean annual temperature in the range approximately 0–15°. This favorable temperature range typically includes Mediterranean, grassland, and temperate forest biome types, but of these, the Mediterranean and the temperate deciduous forest biomes are the only ones on which regression residuals indicate earlier-than-predicted first observed pottery dates.


Radiocarbon ◽  
2014 ◽  
Vol 56 (2) ◽  
pp. 723-732 ◽  
Author(s):  
Fabio Silva ◽  
James Steele ◽  
Kevin Gibbs ◽  
Peter Jordan

This article introduces a method of exploratory analysis of the geographical factors influencing large-scale innovation diffusion, and illustrates its application to the case of early pottery dispersal in the Old World. Regression techniques are used to identify broad-scale spatiotemporal trends in the innovation's first occurrence, and regression residuals are then analyzed to identify geographical variation (climate, biomes) that may have influenced local rates of diffusion. The boundaries between the modeled diffusion zones segregate the western half of the map into a Eurasian hunter-gatherer pottery-using zone affiliated by cultural descent to the Siberian center of innovation, and a lower-latitude farming and pastoralist zone affiliated by cultural descent to the north African center of innovation. However, the correlation coefficients suggest that this baseline model has limited explanatory power, with geographical patterning in the residuals indicating that habitat also greatly affected rates of spread of the new technology. Earlier-than-predicted ages for early pottery tend to occur in locations with mean annual temperature in the range approximately 0–15°. This favorable temperature range typically includes Mediterranean, grassland, and temperate forest biome types, but of these, the Mediterranean and the temperate deciduous forest biomes are the only ones on which regression residuals indicate earlier-than-predicted first observed pottery dates.


Author(s):  
Verena Bauer ◽  
Dietmar Harhoff ◽  
Göran Kauermann

AbstractThe development and application of models, which take the evolution of network dynamics into account, are receiving increasing attention. We contribute to this field and focus on a profile likelihood approach to model time-stamped event data for a large-scale dynamic network. We investigate the collaboration of inventors using EU patent data. As event we consider the submission of a joint patent and we explore the driving forces for collaboration between inventors. We propose a flexible semiparametric model, which includes external and internal covariates, where the latter are built from the network history.


2016 ◽  
Vol 13 (04) ◽  
pp. 1650019 ◽  
Author(s):  
Abdulaziz Alghadeer ◽  
Sherif Mohamed

Recent innovation diffusion in organisations literature suggests that innovation diffusion dimensions and characteristics are not independent of each other, rather organisational internal environment interacts with both an organisational external environment and an innovation’s characteristics. The purpose of this paper is to examine the validity of the framework consisting of organisational innovation dimensions and characteristics within Saudi Arabian organisations. We test this model with survey data from a large-scale survey of 223 Saudi public and private project-based organisations, these organisations had either adopted, or intended to adopt, the project management office (PMO). To obtain a broad representation of respondents, and to minimise bias, the survey did not target any specific industry. Statistical analysis, specifically exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) were conducted to ascertain the factors underlying each construct. Structural equations modelling (SEM) was sequentially utilised to determine the factor structure of the model and to assess the relationships between model constructs. This paper took an initiative step towards a conceptual framework for organisational innovation diffusion, represented by the PMO. Its results revealed that perceived organisational innovation climate functions as a gateway to the organisational innovation diffusion. It was also found that technology mediate the relationships between socio-culture and organisation climate for innovation. More importantly, PMO complexity was not related to the intention to implement the PMO. The quantitative study showed that the framework is a useful tool for studying the diffusion of organisation innovation. The model can potentially form the foundations of a framework for organisations seeking to enhance the organisational innovation diffusion that could in turn strengthen their business performance.


1999 ◽  
Vol 173 ◽  
pp. 243-248
Author(s):  
D. Kubáček ◽  
A. Galád ◽  
A. Pravda

AbstractUnusual short-period comet 29P/Schwassmann-Wachmann 1 inspired many observers to explain its unpredictable outbursts. In this paper large scale structures and features from the inner part of the coma in time periods around outbursts are studied. CCD images were taken at Whipple Observatory, Mt. Hopkins, in 1989 and at Astronomical Observatory, Modra, from 1995 to 1998. Photographic plates of the comet were taken at Harvard College Observatory, Oak Ridge, from 1974 to 1982. The latter were digitized at first to apply the same techniques of image processing for optimizing the visibility of features in the coma during outbursts. Outbursts and coma structures show various shapes.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


2000 ◽  
Vol 179 ◽  
pp. 205-208
Author(s):  
Pavel Ambrož ◽  
Alfred Schroll

AbstractPrecise measurements of heliographic position of solar filaments were used for determination of the proper motion of solar filaments on the time-scale of days. The filaments have a tendency to make a shaking or waving of the external structure and to make a general movement of whole filament body, coinciding with the transport of the magnetic flux in the photosphere. The velocity scatter of individual measured points is about one order higher than the accuracy of measurements.


Author(s):  
Simon Thomas

Trends in the technology development of very large scale integrated circuits (VLSI) have been in the direction of higher density of components with smaller dimensions. The scaling down of device dimensions has been not only laterally but also in depth. Such efforts in miniaturization bring with them new developments in materials and processing. Successful implementation of these efforts is, to a large extent, dependent on the proper understanding of the material properties, process technologies and reliability issues, through adequate analytical studies. The analytical instrumentation technology has, fortunately, kept pace with the basic requirements of devices with lateral dimensions in the micron/ submicron range and depths of the order of nonometers. Often, newer analytical techniques have emerged or the more conventional techniques have been adapted to meet the more stringent requirements. As such, a variety of analytical techniques are available today to aid an analyst in the efforts of VLSI process evaluation. Generally such analytical efforts are divided into the characterization of materials, evaluation of processing steps and the analysis of failures.


Author(s):  
V. C. Kannan ◽  
A. K. Singh ◽  
R. B. Irwin ◽  
S. Chittipeddi ◽  
F. D. Nkansah ◽  
...  

Titanium nitride (TiN) films have historically been used as diffusion barrier between silicon and aluminum, as an adhesion layer for tungsten deposition and as an interconnect material etc. Recently, the role of TiN films as contact barriers in very large scale silicon integrated circuits (VLSI) has been extensively studied. TiN films have resistivities on the order of 20μ Ω-cm which is much lower than that of titanium (nearly 66μ Ω-cm). Deposited TiN films show resistivities which vary from 20 to 100μ Ω-cm depending upon the type of deposition and process conditions. TiNx is known to have a NaCl type crystal structure for a wide range of compositions. Change in color from metallic luster to gold reflects the stabilization of the TiNx (FCC) phase over the close packed Ti(N) hexagonal phase. It was found that TiN (1:1) ideal composition with the FCC (NaCl-type) structure gives the best electrical property.


Author(s):  
J. Liu ◽  
N. D. Theodore ◽  
D. Adams ◽  
S. Russell ◽  
T. L. Alford ◽  
...  

Copper-based metallization has recently attracted extensive research because of its potential application in ultra-large-scale integration (ULSI) of semiconductor devices. The feasibility of copper metallization is, however, limited due to its thermal stability issues. In order to utilize copper in metallization systems diffusion barriers such as titanium nitride and other refractory materials, have been employed to enhance the thermal stability of copper. Titanium nitride layers can be formed by annealing Cu(Ti) alloy film evaporated on thermally grown SiO2 substrates in an ammonia ambient. We report here the microstructural evolution of Cu(Ti)/SiO2 layers during annealing in NH3 flowing ambient.The Cu(Ti) films used in this experiment were prepared by electron beam evaporation onto thermally grown SiO2 substrates. The nominal composition of the Cu(Ti) alloy was Cu73Ti27. Thermal treatments were conducted in NH3 flowing ambient for 30 minutes at temperatures ranging from 450°C to 650°C. Cross-section TEM specimens were prepared by the standard procedure.


Sign in / Sign up

Export Citation Format

Share Document