On relative prime number in a sequence of positive integers

2002 ◽  
Vol 106 (1-2) ◽  
pp. 509-515 ◽  
Author(s):  
Masahide Ohtomo ◽  
Fumikazu Tamari
Author(s):  
ALEXANDER GRISHKOV ◽  
LIUDMILA SABININA ◽  
EFIM ZELMANOV

Abstract We prove that for positive integers $m \geq 1, n \geq 1$ and a prime number $p \neq 2,3$ there are finitely many finite m-generated Moufang loops of exponent $p^n$ .


2013 ◽  
Vol 09 (07) ◽  
pp. 1841-1853 ◽  
Author(s):  
B. K. MORIYA ◽  
C. J. SMYTH

We evaluate [Formula: see text] for a certain family of integer sequences, which include the Fourier coefficients of some modular forms. In particular, we compute [Formula: see text] for all positive integers n for Ramanujan's τ-function. As a consequence, we obtain many congruences — for instance that τ(1000m) is always divisible by 64000. We also determine, for a given prime number p, the set of n for which τ(pn-1) is divisible by n. Further, we give a description of the set {n ∈ ℕ : n divides τ(n)}. We also survey methods for computing τ(n). Finally, we find the least n for which τ(n) is prime, complementing a result of D. H. Lehmer, who found the least n for which |τ(n)| is prime.


2000 ◽  
Vol 157 ◽  
pp. 103-127 ◽  
Author(s):  
Ti Zuo Xuan

For real x ≥ y ≥ 2 and positive integers a, q, let Φ(x, y; a, q) denote the number of positive integers ≤ x, free of prime factors ≤ y and satisfying n ≡ a (mod q). By the fundamental lemma of sieve, it follows that for (a,q) = 1, Φ(x,y;a,q) = φ(q)-1, Φ(x, y){1 + O(exp(-u(log u- log2 3u- 2))) + (u = log x log y) holds uniformly in a wider ranges of x, y and q.Let χ be any character to the modulus q, and L(s, χ) be the corresponding L-function. Let be a (‘exceptional’) real character to the modulus q for which L(s, ) have a (‘exceptional’) real zero satisfying > 1 - c0/log q. In the paper, we prove that in a slightly short range of q the above first error term can be replaced by where ρ(u) is Dickman function, and ρ′(u) = dρ(u)/du.The result is an analogue of the prime number theorem for arithmetic progressions. From the result can deduce that the above first error term can be omitted, if suppose that 1 < q < (log q)A.


2019 ◽  
Vol 15 (05) ◽  
pp. 1037-1050
Author(s):  
Erik R. Tou

The mathematics of juggling emerged after the development of siteswap notation in the 1980s. Consequently, much work was done to establish a mathematical theory that describes and enumerates the patterns that a juggler can (or would want to) execute. More recently, mathematicians have provided a broader picture of juggling sequences as an infinite set possessing properties similar to the set of positive integers. This theoretical framework moves beyond the physical possibilities of juggling and instead seeks more general mathematical results, such as an enumeration of juggling patterns with a fixed period and arbitrary number of balls. One problem unresolved until now is the enumeration of primitive juggling sequences, those fundamental juggling patterns that are analogous to the set of prime numbers. By applying analytic techniques to previously-known generating functions, we give asymptotic counting theorems for primitive juggling sequences, much as the prime number theorem gives asymptotic counts for the prime positive integers.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Long Chen ◽  
Kaimin Cheng ◽  
Tingting Wang

Let p be an odd prime number and n be a positive integer. Let vpn, N∗, and Q+ denote the p-adic valuation of the integer n, the set of positive integers, and the set of positive rational numbers, respectively. In this paper, we introduce an arithmetic function fp:N∗⟶Q+ defined by fpn≔n/pvpn1−vpn for any positive integer n. We show several interesting arithmetic properties about that function and then use them to establish some curious results involving the p-adic valuation. Some of these results extend Farhi’s results from the case of even prime to that of odd prime.


2017 ◽  
Vol 26 (05) ◽  
pp. 1750031 ◽  
Author(s):  
Seungsang Oh ◽  
Kyungpyo Hong ◽  
Ho Lee ◽  
Hwa Jeong Lee ◽  
Mi Jeong Yeon

Knot mosaic theory was introduced by Lomonaco and Kauffman in the paper on ‘Quantum knots and mosaics’ to give a precise and workable definition of quantum knots, intended to represent an actual physical quantum system. A knot [Formula: see text]-mosaic is an [Formula: see text] matrix whose entries are eleven mosaic tiles, representing a knot or a link by adjoining properly. In this paper, we introduce two variants of knot mosaics: period knot mosaics and toroidal knot mosaics, which are common features in physics and mathematics. We present an algorithm producing the exact enumeration of period knot [Formula: see text]-mosaics for any positive integers [Formula: see text] and [Formula: see text], toroidal knot [Formula: see text]-mosaics for co-prime integers [Formula: see text] and [Formula: see text], and furthermore toroidal knot [Formula: see text]-mosaics for a prime number [Formula: see text]. We also analyze the asymptotics of the growth rates of their cardinality.


2014 ◽  
Vol 12 (7) ◽  
Author(s):  
Paulina Szczuka

AbstractIn this paper we characterize the closures of arithmetic progressions in the topology T on the set of positive integers with the base consisting of arithmetic progressions {an + b} such that if the prime number p is a factor of a, then it is also a factor of b. The topology T is called the common division topology.


2017 ◽  
Vol 97 (1) ◽  
pp. 11-14
Author(s):  
M. SKAŁBA

Let $a_{1},a_{2},\ldots ,a_{m}$ and $b_{1},b_{2},\ldots ,b_{l}$ be two sequences of pairwise distinct positive integers greater than $1$. Assume also that none of the above numbers is a perfect power. If for each positive integer $n$ and prime number $p$ the number $\prod _{i=1}^{m}(1-a_{i}^{n})$ is divisible by $p$ if and only if the number $\prod _{j=1}^{l}(1-b_{j}^{n})$ is divisible by $p$, then $m=l$ and $\{a_{1},a_{2},\ldots ,a_{m}\}=\{b_{1},b_{2},\ldots ,b_{l}\}$.


ISRN Algebra ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Yonglin Cao

Let R=GR(ps,psm) be a Galois ring of characteristic ps and cardinality psm, where s and m are positive integers and p is an odd prime number. Two kinds of cogredient standard forms of symmetric matrices over R are given, and an explicit formula to count the number of all distinct cogredient classes of symmetric matrices over R is obtained.


Sign in / Sign up

Export Citation Format

Share Document