Quasi-stationary distributions and convergence to quasi-stationarity of birth-death processes
For a birth–death process (X(t), ) on the state space {−1, 0, 1, ·· ·}, where −1 is an absorbing state which is reached with certainty and {0, 1, ·· ·} is an irreducible class, we address and solve three problems. First, we determine the set of quasi-stationary distributions of the process, that is, the set of initial distributions which are such that the distribution of X(t), conditioned on non-absorption up to time t, is independent of t. Secondly, we determine the quasi-limiting distribution of X(t), that is, the limit as t→∞ of the distribution of X(t), conditioned on non-absorption up to time t, for any initial distribution with finite support. Thirdly, we determine the rate of convergence of the transition probabilities of X(t), conditioned on non-absorption up to time t, to their limits. Some examples conclude the paper. Our main tools are the spectral representation for the transition probabilities of a birth–death process and a duality concept for birth–death processes.