ON THE REGULAR GRAPH RELATED TO THE G-CONJUGACY CLASSES

Author(s):  
SH. RAHIMI ◽  
Z. AKHLAGHI

Abstract Given a finite group G with a normal subgroup N, the simple graph $\Gamma _{\textit {G}}( \textit {N} )$ is a graph whose vertices are of the form $|x^G|$ , where $x\in {N\setminus {Z(G)}}$ and $x^G$ is the G-conjugacy class of N containing the element x. Two vertices $|x^G|$ and $|y^G|$ are adjacent if they are not coprime. We prove that, if $\Gamma _G(N)$ is a connected incomplete regular graph, then $N= P \times {A}$ where P is a p-group, for some prime p, $A\leq {Z(G)}$ and $\textbf {Z}(N)\not = N\cap \textbf {Z}(G)$ .

2016 ◽  
Vol 94 (2) ◽  
pp. 266-272
Author(s):  
ANTONIO BELTRÁN ◽  
MARÍA JOSÉ FELIPE ◽  
CARMEN MELCHOR

Let $G$ be a finite group and let $N$ be a normal subgroup of $G$. We determine the structure of $N$ when the diameter of the graph associated to the $G$-conjugacy classes contained in $N$ is as large as possible, that is, equal to three.


2013 ◽  
Vol 12 (05) ◽  
pp. 1250204
Author(s):  
AMIN SAEIDI ◽  
SEIRAN ZANDI

Let G be a finite group and let N be a normal subgroup of G. Assume that N is the union of ξ(N) distinct conjugacy classes of G. In this paper, we classify solvable groups G in which the set [Formula: see text] has at most three elements. We also compute the set [Formula: see text] in most cases.


2004 ◽  
Vol 69 (2) ◽  
pp. 317-325 ◽  
Author(s):  
Antonio Beltrán ◽  
María José Felipe

Let G be a finite group and π an arbitrary set of primes. We investigate the structure of G when the lengths of the conjugacy classes of its π-elements are prime powers. Under this condition, we show that such lengths are either powers of just one prime or exactly {1,qa, rb}, with q and r two distinct primes lying in π and a, b > 0. In the first case, we obtain certain properties of the normal structure of G, and in the second one, we provide a characterisation of the structure of G.


Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2060
Author(s):  
Siqiang Yang ◽  
Xianhua Li

Let G be a finite group. In this paper, we study how certain arithmetical conditions on the conjugacy class lengths of real elements of G influence the structure of G. In particular, a new type of prime graph is introduced and studied. We obtain a series of theorems which generalize some existed results.


2018 ◽  
Vol 97 (3) ◽  
pp. 406-411 ◽  
Author(s):  
YONG YANG ◽  
GUOHUA QIAN

Let $G$ be a finite group. Let $\operatorname{cl}(G)$ be the set of conjugacy classes of $G$ and let $\operatorname{ecl}_{p}(G)$ be the largest integer such that $p^{\operatorname{ecl}_{p}(G)}$ divides $|C|$ for some $C\in \operatorname{cl}(G)$. We prove the following results. If $\operatorname{ecl}_{p}(G)=1$, then $|G:F(G)|_{p}\leq p^{4}$ if $p\geq 3$. Moreover, if $G$ is solvable, then $|G:F(G)|_{p}\leq p^{2}$.


Author(s):  
Sajjad M. Robati ◽  
M. R. Darafsheh

Let [Formula: see text] be a finite group. We say that a conjugacy class of [Formula: see text] in [Formula: see text] is vanishing if there exists some irreducible character [Formula: see text] of [Formula: see text] such that [Formula: see text]. In this paper, we show that finite groups with at most six vanishing conjugacy classes are solvable or almost simple groups.


2019 ◽  
Vol 22 (5) ◽  
pp. 933-940
Author(s):  
Jinbao Li ◽  
Yong Yang

Abstract Let G be a finite group and p a prime. Let {\operatorname{cl}(G)} be the set of conjugacy classes of G, and let {\operatorname{ecl}_{p}(G)} be the largest integer such that {p^{\operatorname{ecl}_{p}(G)}} divides {|C|} for some {C\in\operatorname{cl}(G)} . We show that if {p\geq 3} and {\operatorname{ecl}_{p}(G)=1} , then {\lvert G\mskip 1.0mu \mathord{:}\mskip 1.0mu O_{p}(G)\rvert_{p}\leq p^{3}} . This improves the main result of Y. Yang and G. Qian, On p-parts of conjugacy class sizes of finite groups, Bull. Aust. Math. Soc. 97 2018, 3, 406–411.


2018 ◽  
Vol 21 (1) ◽  
pp. 45-63
Author(s):  
Barbara Baumeister ◽  
Gil Kaplan

AbstractLetGbe a finite group with an abelian normal subgroupN. When doesNhave a unique conjugacy class of complements inG? We consider this question with a focus on properties of maximal subgroups. As corollaries we obtain Theorems 1.6 and 1.7 which are closely related to a result by Parker and Rowley on supplements of a nilpotent normal subgroup [3, Theorem 1]. Furthermore, we consider families of maximal subgroups ofGclosed under conjugation whose intersection equals{\Phi(G)}. In particular, we characterize the soluble groups having a unique minimal family with this property (Theorem 2.3, Remark 2.4). In the case when{\Phi(G)=1}, these are exactly the soluble groups in which each abelian normal subgroup has a unique conjugacy class of complements.


1987 ◽  
Vol 107 (1-2) ◽  
pp. 121-132 ◽  
Author(s):  
Antonio Vera López ◽  
Ma Concepción Larrea

SynopsisIn this paper, the number of conjugacy classes of π-elements (respectively non π-elements) of G is analysed in terras of the corresponding numbers of G/N and N, for each N normal subgroup of G. In particular, we generalise well-known results of P. X. Gallagher and C. H. Sah.


Filomat ◽  
2020 ◽  
Vol 34 (5) ◽  
pp. 1713-1719
Author(s):  
Neda Ahanjideh

For a finite group G, let Z(G) denote the center of G and cs*(G) be the set of non-trivial conjugacy class sizes of G. In this paper, we show that if G is a finite group such that for some odd prime power q ? 4, cs*(G) = cs*(PGL2(q)), then either G ? PGL2(q) X Z(G) or G contains a normal subgroup N and a non-trivial element t ? G such that N ? PSL2(q)X Z(G), t2 ? N and G = N. ?t?. This shows that the almost simple groups cannot be determined by their set of conjugacy class sizes (up to an abelian direct factor).


Sign in / Sign up

Export Citation Format

Share Document