scholarly journals Cohomology Relations in Spaces with a Topological Transformation Group

1953 ◽  
Vol 5 ◽  
pp. 113-125
Author(s):  
Sze-Tsen hu

Let Q be a topological transformation group operating on the left of a topological space X. Let us denote by. B the orbit space and p : X → B the projection, p is a continuous and open map of X onto B. For an arbitrary abelian coefficient group G, the continuous map p induces homomorphisms

Author(s):  
Christian Haesemeyer ◽  
Charles A. Weibel

This chapter develops the basic theory of symmetric powers of smooth varieties. The constructions in this chapter are based on an analogy with the corresponding symmetric power constructions in topology. If 𝐾 is a set (or even a topological space) then the symmetric power 𝑆𝑚𝐾 is defined to be the orbit space 𝐾𝑚/Σ‎𝑚, where Σ‎𝑚 is the symmetric group. If 𝐾 is pointed, there is an inclusion 𝑆𝑚𝐾 ⊂ 𝑆𝑚+1𝐾 and 𝑆∞𝐾 = ∪𝑆𝑚𝐾 is the free abelian monoid on 𝐾 − {*}. When 𝐾 is a connected topological space, the Dold–Thom theorem says that ̃𝐻*(𝐾, ℤ) agrees with the homotopy groups π‎ *(𝑆∞𝐾). In particular, the spaces 𝑆∞(𝑆 𝑛) have only one homotopy group (𝑛 ≥ 1) and hence are the Eilenberg–Mac Lane spaces 𝐾(ℤ, 𝑛) which classify integral homology.


1962 ◽  
Vol 14 ◽  
pp. 461-466 ◽  
Author(s):  
Isaac Namioka

Let Δn (n > 0) denote the subset of the Euclidean (n + 1)-dimensional space defined byA subset σ of Δn is called a face if there exists a sequence 0 ≤ i1 ≤ i2 ≤ … < im ≤ n such thatand the dimension of σ is defined to be (n — m). Let denote the union of all faces of Δn of dimensions less than n. A topological space Y is called solid if any continuous map on a closed subspace A of a normal space X into Y can be extended to a map on X into Y. By Tietz's extension theorem, each face of Δn is solid. The present paper is concerned with a generalization of the following theorem which seems well known.


1974 ◽  
Vol 26 (4) ◽  
pp. 920-930 ◽  
Author(s):  
R. Grant Woods

Let X be a locally compact Hausdorff topological space. A compactification of X is a compact Hausdorff space which contains X as a dense subspace. Two compactifications αX and γX of X are equivalent if there is a homeomorphism from αX onto γX that fixes X pointwise. We shall identify equivalent compactifications of a given space. If is a family of compactifications of X, we can partially order by saying that αX ≦ γX if there is a continuous map from γX onto αX that fixes X pointwise.


1977 ◽  
Vol 29 (6) ◽  
pp. 1121-1128
Author(s):  
J. K. Kohli

A σ-discrete set in a topological space is a set which is a countable union of discrete closed subsets. A mapping ƒ : X ⟶ Y from a topological space X into a topological space Y is said to be σ-discrete (countable) if each fibre ƒ-1(y), y ϵ Y is σ-discrete (countable). In 1936, Alexandroff showed that every open map of a bounded multiplicity between Hausdorff spaces is a local homeomorphism on a dense open subset of the domain [2].


1976 ◽  
Vol 28 (3) ◽  
pp. 594-599
Author(s):  
Hsu-Tung Ku ◽  
Mei-Chin Ku

Throughout this paper, the Alexander-Spanier cohomology with compact supports will be used. Suppose X is a compact connected topological ra-manifold which admits an effective action of a compact connected Lie group G (m ≧ 19).


1973 ◽  
Vol 16 (2) ◽  
pp. 225-232 ◽  
Author(s):  
S. K. Kaul

We assume throughout that (X, T, π) is a transformation group [2], where X is a topological space which is always assumed to be regular and Hausdorff. We call a point x ∊ X regular under T if for any open set U in X and any subset G of T such that , there exists an open set V containing x, such that VG ⊆ U [7]. Let R(X) denote the interior of the set of all the regular points of X under T, and I(X) the set of irregular points of X under T, that is the set of points which are not regular under T.


Sign in / Sign up

Export Citation Format

Share Document