scholarly journals Modular forms of degree n and representation by quadratic forms

1979 ◽  
Vol 74 ◽  
pp. 95-122 ◽  
Author(s):  
Yoshiyuki Kitaoka

Let A(m), B(n) be positive definite integral matrices and suppose that B is represented by A over each p-adic integers ring Zp. Using the circle method or theory of modular forms in case of n = 1, B, if sufficiently large, is represented by A provided that m ≥ 5. The approach via the theory of modular forms has been extended by [7] to Siegel modular forms to obtain a partial result in the particular case when n = 2, m ≥ 7.

1982 ◽  
Vol 87 ◽  
pp. 127-146 ◽  
Author(s):  
Yoshiyuki Kitaoka

Let S(m), T(n) be positive definite integral matrices and suppose that T is represented by S over each p-adic integer ring Zp. We proved arithmetically in [3] that T is represented by S over Z provided that m ≥ 2n + 3 and the minimum of T is sufficiently large. This guarantees the existence of at least one representation but does not give any asymptotic formula for the number of representations. To get an asymptotic formula we must employ analytic methods.


1986 ◽  
Vol 102 ◽  
pp. 117-126 ◽  
Author(s):  
Rainer Schulze-Pillot

In a recent paper [9] the author showed (among other results) estimates on the asymptotic behaviour of the representation numbers of positive definite integral ternary quadratic forms, in particular, that for n in a fixed square class tZ2 and lattices L, K in the same spinor genus one has . The main tool utilized for the proof was the theory of modular forms of weight 3/2, especially Shimura’s lifting from the space of cusp forms of weight 3/2 to the space of modular forms of weight 2.


2006 ◽  
Vol 13 (4) ◽  
pp. 687-691
Author(s):  
Guram Gogishvili

Abstract Let 𝑚 ∈ ℕ, 𝑓 be a positive definite, integral, primitive, quaternary quadratic form of the determinant 𝑑 and let ρ(𝑓,𝑚) be the corresponding singular series. When studying the best estimates for ρ(𝑓,𝑚) with respect to 𝑑 and 𝑚 we proved in [Gogishvili, Trudy Tbiliss. Univ. 346: 72–77, 2004] that where 𝑏(𝑘) is the product of distinct prime factors of 16𝑘 if 𝑘 ≠ 1 and 𝑏(𝑘) = 3 if 𝑘 = 1. The present paper proves a more precise estimate where 𝑑 = 𝑑0𝑑1, if 𝑝 > 2; 𝑕(2) ⩾ –4. The last estimate for ρ(𝑓,𝑚) as a general result for quaternary quadratic forms of the above-mentioned type is unimprovable in a certain sense.


2011 ◽  
Vol 07 (06) ◽  
pp. 1603-1614 ◽  
Author(s):  
BYEONG-KWEON OH

For a positive integer d and a non-negative integer a, let Sd,a be the set of all integers of the form dn + a for any non-negative integer n. A (positive definite integral) quadratic form f is said to be Sd,a-universal if it represents all integers in the set Sd, a, and is said to be Sd,a-regular if it represents all integers in the non-empty set Sd,a ∩ Q((f)), where Q(gen(f)) is the set of all integers that are represented by the genus of f. In this paper, we prove that there is a polynomial U(x,y) ∈ ℚ[x,y] (R(x,y) ∈ ℚ[x,y]) such that the discriminant df for any Sd,a-universal (Sd,a-regular) ternary quadratic forms is bounded by U(d,a) (respectively, R(d,a)).


2014 ◽  
Vol 10 (06) ◽  
pp. 1395-1420 ◽  
Author(s):  
Şaban Alaca ◽  
Lerna Pehlivan ◽  
Kenneth S. Williams

Let ℕ denote the set of positive integers and ℤ the set of all integers. Let ℕ0 = ℕ ∪{0}. Let a1x2 + b1xy + c1y2 and a2z2 + b2zt + c2t2 be two positive-definite, integral, binary quadratic forms. The number of representations of n ∈ ℕ0 as a sum of these two binary quadratic forms is [Formula: see text] When (b1, b2) ≠ (0, 0) we prove under certain conditions on a1, b1, c1, a2, b2 and c2 that N(a1, b1, c1, a2, b2, c2; n) can be expressed as a finite linear combination of quantities of the type N(a, 0, b, c, 0, d; n) with a, b, c and d positive integers. Thus, when the quantities N(a, 0, b, c, 0, d; n) are known, we can determine N(a1, b1, c1, a2, b2, c2; n). This determination is carried out explicitly for a number of quaternary quadratic forms a1x2 + b1xy + c1y2 + a2z2 + b2zt + c2t2. For example, in Theorem 1.2 we show for n ∈ ℕ that [Formula: see text] where N is the largest odd integer dividing n and [Formula: see text]


Author(s):  
Steffen Löbrich ◽  
Markus Schwagenscheidt

Abstract We study rationality properties of geodesic cycle integrals of meromorphic modular forms associated to positive definite binary quadratic forms. In particular, we obtain finite rational formulas for the cycle integrals of suitable linear combinations of these meromorphic modular forms.


2018 ◽  
Vol 14 (02) ◽  
pp. 581-594 ◽  
Author(s):  
Jangwon Ju ◽  
Kyoungmin Kim ◽  
Byeong-Kweon Oh

For a positive definite integral ternary quadratic form [Formula: see text], let [Formula: see text] be the number of representations of an integer [Formula: see text] by [Formula: see text]. The famous Minkowski–Siegel formula implies that if the class number of [Formula: see text] is one, then [Formula: see text] can be written as a constant multiple of a product of local densities which are easily computable. In this paper, we consider the case when the spinor genus of [Formula: see text] contains only one class. In this case the above also holds if [Formula: see text] is not contained in a set of finite number of square classes which are easily computable. By using this fact, we prove some extension of the recent results on both the representations of generalized Bell ternary forms and the representations of ternary quadratic forms with some congruence conditions.


1996 ◽  
Vol 142 ◽  
pp. 95-132 ◽  
Author(s):  
Boris A. Datskovsky

For an integer d > 0 (resp. d < 0) let hd denote the number of Sl2(Z)-equivalence classes of primitive (resp. primitive positive-definite) integral binary quadratic forms of discriminant d. For where t and u are the smallest positive integral solutions of the equation t2 − du2 = 4 if d is a non-square and εd = 1 if d is a square.


Sign in / Sign up

Export Citation Format

Share Document