Functional and quantitative analysis of seed thermal responses in prostrate knotweed (Polygonum aviculare) and common purslane (Portulaca oleracea)
A screening method was used to characterize seed thermal responses of prostrate knotweed and common purslane, two important weeds invading wheat in the humid Pampa. Through this method, it was possible to detect thermal conditions that induce or break dormancy in both species. In addition, we were able to quantify changes in dormancy level in seed populations as a function of time of burial after dispersal, through changes in width of the thermal range within which germination can occur. Plotting the overlap of this thermal range and observed soil temperature throughout the year allowed the prediction of the seedling emergence period. This prediction was in agreement with observed seedling emergence in the field for both species, during 2 consecutive yr. From the analysis carried out under laboratory conditions, it was also possible to estimate required thermal time for germination of the nondormant fraction of the population and the base temperature above which thermal time is accumulated. The results obtained from this study are the basis for the formulation of seed germination models that predict not only the occurrence of seedling emergence in the field, but also the dynamics of germination within those periods.