On multipliers of Fourier transforms

Author(s):  
Louis Pigno

In this paper G is a locally compact Abelian group, φ a complex-valued function defined on the dual Γ, Lp(G) (1 ≤ p ≤ ∞) the usual Lebesgue space of index p formed with respect to Haar measure, C(G) the set of all bounded continuous complex-valued functions on G, and C0(G) the set of all f ∈ C(G) which vanish at infinity.

1965 ◽  
Vol 5 (2) ◽  
pp. 216-233 ◽  
Author(s):  
R. E. Edwards

Throughout this paper, G denotes a Hausdorff locally compact Abelian group, X its character group, and Lp(G) (1 ≦ p ≦ ∞) the usual Lebesgue space formed relative to the Haar measure on G. If f ∈ Lp(G), we denote by Tp[f] the closure (or weak closure, if p = ∞) in Lp(G) of the set linear combinations of translates of f.


Author(s):  
T. A. Davis

Let G be a locally compact Abelian group, written adoptively, with Haar measure m, L1(G) the group algebra of G, and M(G) the Banach algebra of all bounded, complex-valued, regular, countably additive measures on G. For a general account of L1(G) and M(G) see Rudin (7).


1973 ◽  
Vol 9 (1) ◽  
pp. 73-82 ◽  
Author(s):  
U.B. Tewari ◽  
A.K. Gupta

Let G be a locally compact abelian group and Ĝ be its dual group. For 1 ≤ p < ∞, let Ap (G) denote the set of all those functions in L1(G) whose Fourier transforms belong to Lp (Ĝ). Let M(Ap (G)) denote the set of all functions φ belonging to L∞(Ĝ) such that is Fourier transform of an L1-function on G whenever f belongs to Ap (G). For 1 ≤ p < q < ∞, we prove that Ap (G) Aq(G) provided G is nondiscrete. As an application of this result we prove that if G is an infinite compact abelian group and 1 ≤ p ≤ 4 then lp (Ĝ) M(Ap(G)), and if p > 4 then there exists ψ є lp (Ĝ) such that ψ does not belong to M(Ap (G)).


1987 ◽  
Vol 39 (1) ◽  
pp. 123-148 ◽  
Author(s):  
Maria L. Torres De Squire

Throughout the whole paper G will be a locally compact abelian group with Haar measure m and dual group Ĝ. The difference of two sets A and B will be denoted by A ∼ B, i.e.,For a function f on G and s ∊ G, the functions f′ and fs will be defined by


2013 ◽  
Vol 59 (2) ◽  
pp. 253-268
Author(s):  
Ilker Eryilmaz ◽  
Cenap Duyar

Abstract Let G be a locally compact abelian group (non-compact, non-discrete) with Haar measure and 1 ≤ p < ∞: The purpose of this paper is to study the space of multipliers on Lp;w (G) and characterize it as the algebra of all multipliers of the closely related Banach algebra of tempered elements in Lp;w (G).


2000 ◽  
Vol 23 (9) ◽  
pp. 651-656
Author(s):  
S. Öztop

LetGbe a locally compact abelian group with Haar measuredx, and letωbe a symmetric Beurling weight function onG(Reiter, 1968). In this paper, using the relations betweenpiandqi, where1<pi,   qi<∞,pi≠qi(i=1,2), we show that the space of multipliers fromLωp(G)to the spaceS(q′1,q′2,ω−1), the space of multipliers fromLωp1(G)∩Lωp2(G)toLωq(G)and the space of multipliersLωp1(G)∩Lωp2(G)toS(q′1,q′2,ω−1).


1990 ◽  
Vol 108 (3) ◽  
pp. 527-538 ◽  
Author(s):  
M. Filali

In recent years, the Stone-Čech compactification of certain semigroups (e.g. discrete semigroups) has been an interesting semigroup compactification (i.e. a compact right semitopological semigroup which contains a dense continuous homomorphic image of the given semigroup) to study, because an Arens-type product can be introduced. If G is a non-compact and non-discrete locally compact abelian group, then it is not possible to introduce such a product into the Stone-Čech compactification βG of G (see [1]). However, let UC(G) be the Banach algebra of bounded uniformly continuous complex functions on G, and let UG be the spectrum of UC(G) with the Gelfand topology. If f∈ UC(G), then the functions f and fy defined on G byare also in UC(G).


1994 ◽  
Vol 17 (3) ◽  
pp. 475-478 ◽  
Author(s):  
K. Parthasarathy ◽  
Sujatha Varma

Different versions of Wiener's Tauberian theorem are discussed for the generalized group algebraL1(G,A)(of integrable functions on a locally compact abelian groupGtaking values in a commutative semisimple regular Banach algebraA) usingA-valued Fourier transforms. A weak form of Wiener's Tauberian property is introduced and it is proved thatL1(G,A)is weakly Tauberian if and only ifAis. The vector analogue of Wiener'sL2-span of translates theorem is examined.


1968 ◽  
Vol 20 ◽  
pp. 1165-1172 ◽  
Author(s):  
G. I. Gaudry

Suppose that G1 and G2 are two locally compact Hausdorff groups with identity elements e and e’ and with respective left Haar measures dx and dy. Let 1 ≦ p ≦ ∞, and Lp(Gi) be the usual Lebesgue space over Gi formed relative to left Haar measure on Gi. We denote by M(Gi) the space of Radon measures, and by Mbd(Gi) the space of bounded Radon measures on Gi. If a ϵ Gi we write ϵa for the Dirac measure at the point a. Cc(Gi) will denote the space of continuous, complex-valued functions on Gi with compact supports, whilst Cc+ (Gi) will denote that subset of Cc(Gi) consisting of those functions which are real-valued and non-negative.


2014 ◽  
Vol 64 (2) ◽  
Author(s):  
Ibrahim Akbarbaglu ◽  
Majid Heydarpour ◽  
Saeid Maghsoudi

AbstractLet G be a locally compact abelian group with a fixed Haar measure and ω be a weight on G. For 1 < p < ∞, we study uniqueness of uniform and C*-norm properties of the invariant weighted algebra L p(G, ω).


Sign in / Sign up

Export Citation Format

Share Document