scholarly journals On the order-theoretical foundation of a theory of quasicompactly generated spaces without separation axiom

Author(s):  
Karl H. Hofmann ◽  
Jimmie D. Lawson

AbstractA Hausdorff space X is said to be compactly generated (a k-space) if and only if the open subsets U of X are precisely those subsets for which K ∩ U is open in K for all compact subsets of K of X. We interpret this property as a duality property of the lattice O(X) of open sets of X. This view point allows the introduction of the concept of being quasicompactly generated for an arbitrary sober space X. The methods involve the duality theory of up-complete semilattices, and certain inverse limit constructions. In the process, we verify that the new concept agrees with the classical one on Hausdorff spaces.

1981 ◽  
Vol 33 (4) ◽  
pp. 872-884 ◽  
Author(s):  
Hans Vermeer ◽  
Evert Wattel

In 1958 Gleason [6] proved the following :THEOREM. In the category of compact Hausdorff spaces and continuous maps, the projective elements are precisely the extremally disconnected spaces.The projective elements in many topological categories with perfect continuous functions as morphisms have been found since that time. For example: In the following categories the projective elements are precisely the extremally disconnected spaces:(i) The category of Tychonov spaces and perfect continuous functions. [4] [11].(ii) The category of regular spaces and perfect continuous functions. [4] [12].(iii) The category of Hausdorff spaces and perfect continuous functions. [10] [1].(iv) In the category of Hausdorff spaces and continuous k-maps the projective members are precisely the extremally disconnected k-spaces. [14].In 1963 Iliadis [7] constructed for every Hausdorff space X the so called Iliadis absolute E[X], which is a maximal pre-image of X under irreducible θ-continuous maps.


1973 ◽  
Vol 16 (3) ◽  
pp. 435-437 ◽  
Author(s):  
C. Eberhart ◽  
J. B. Fugate ◽  
L. Mohler

It is well known (see [3](1)) that no continuum (i.e. compact, connected, Hausdorff space) can be written as a countable disjoint union of its (nonvoid) closed subsets. This result can be generalized in two ways into the setting of locally compact, connected, Hausdorff spaces. Using the one point compactification of a locally compact, connected, Hausdorff space X one can easily show that X cannot be written as a countable disjoint union of compact subsets. If one makes the further assumption that X is locally connected, then one can show that X cannot be written as a countable disjoint union of closed subsets.(2)


1994 ◽  
Vol 37 (4) ◽  
pp. 552-555 ◽  
Author(s):  
Juris Steprans ◽  
Stephen Watson ◽  
Winfried Just

AbstractWe propose an analogue of the Banach contraction principle for connected compact Hausdorff spaces. We define a J-contraction of a connected compact Hausdorff space. We show that every contraction of a compact metric space is a J-contraction and that any J-contraction of a compact metrizable space is a contraction for some admissible metric. We show that every J-contraction has a unique fixed point and that the orbit of each point converges to this fixed point.


1981 ◽  
Vol 34 (2) ◽  
pp. 349-355
Author(s):  
David John

The fact that simple links in locally compact connected metric spaces are nondegenerate was probably first established by C. Kuratowski and G. T. Whyburn in [2], where it is proved for Peano continua. J. L. Kelley in [3] established it for arbitrary metric continua, and A. D. Wallace extended the theorem to Hausdorff continua in [4]. In [1], B. Lehman proved this theorem for locally compact, locally connected Hausdorff spaces. We will show that the locally connected property is not necessary.A continuum is a compact connected Hausdorff space. For any two points a and b of a connected space M, E(a, b) denotes the set of all points of M which separate a from b in M. The interval ab of M is the set E(a, b) ∪ {a, b}.


1994 ◽  
Vol 50 (3) ◽  
pp. 445-449 ◽  
Author(s):  
T.K. Das

By constructing the projective lift of a dp-epimorphism, we find a covariant functor E from the category Cd of regular Hausdorff spaces and continuous dp-epimorphisms to its coreflective subcategory εd consisting of projective objects of Cd We use E to show that E(X/G) is homeomorphic to EX/G whenever G is a properly discontinuous group of homeomorphisms of a locally compact Hausdorff space X and X/G is an object of Cd.


2011 ◽  
Vol 61 (4) ◽  
Author(s):  
Mahender Singh

AbstractWe show that the inverse limit and the orbit map commute for actions of compact groups on compact Hausdorff spaces.


1966 ◽  
Vol 9 (3) ◽  
pp. 353-356 ◽  
Author(s):  
M.G. Murdeshwar ◽  
S.A. Naimpally

It is well-known that in a Hausdorff space, a sequence has at most one limit, but that the converse is not true. The condition that every sequence have at most one limit will be called the semi-Hausdorff condition. We will prove that the semi-Hausdorff condition is strictly stronger than the T1 -axiom and is thus between the T1 and T2 axioms. In this note, we investigate into some properties of the spaces satisfying the semi-Hausdorff condition.


Filomat ◽  
2018 ◽  
Vol 32 (15) ◽  
pp. 5481-5500
Author(s):  
G. Dimov ◽  
E. Ivanova-Dimova ◽  
I. Düntsch

As proved in [16], there exists a duality ?t between the category HLC of locally compact Hausdorff spaces and continuous maps, and the category DHLC of complete local contact algebras and appropriate morphisms between them. In this paper, we introduce the notions of weight wa and of dimension dima of a local contact algebra, and we prove that if X is a locally compact Hausdorff space then w(X) = wa(?t(X)), and if, in addition, X is normal, then dim(X) = dima(?t(X)).


1970 ◽  
Vol 13 (1) ◽  
pp. 69-70
Author(s):  
S. B. Nadler

The following lemma, which appears as Lemma 4 in [5], was used to determine certain multicoherence properties of inverse limits of continua.Lemma. Let X denote the inverse limit of an inverse system {Xλ, fλμ, Λ} of compact Hausdorff spaces Xλ. If Xλ has no more than k components (where k < ∞ is fixed) for each λ ∊ Λ, then X has no more than k components.In this paper we give a set theoretic analogue of this lemma and an extension which was suggested to the author by Professor F. W. Lawvere. An application to inverse limits of finite groups is then given.


1985 ◽  
Vol 101 (3-4) ◽  
pp. 203-206 ◽  
Author(s):  
Michael Cambern

SynopsisIf X is a compact Hausdorff space and E a dual Banach space, let C(X, Eσ*) denote the Banach space of continuous functions F from X to E when the latter space is provided with its weak * topology, normed by . It is shown that if X and Y are extremally disconnected compact Hausdorff spaces and E is a uniformly convex Banach space, then the existence of an isometry between C(X, Eσ*) and C(Y, Eσ*) implies that X and Y are homeomorphic.


Sign in / Sign up

Export Citation Format

Share Document