scholarly journals Coherent radar ice thickness measurements over the Greenland ice sheet

2001 ◽  
Vol 106 (D24) ◽  
pp. 33761-33772 ◽  
Author(s):  
S. Gogineni ◽  
D. Tammana ◽  
D. Braaten ◽  
C. Leuschen ◽  
T. Akins ◽  
...  
Author(s):  
Louise Sandberg Sørensen ◽  
Sebastian B. Simonsen ◽  
René Forsberg ◽  
Lars Stenseng ◽  
Henriette Skourup ◽  
...  

The Greenland ice sheet has experienced an average mass loss of 142 ± 49 Gt/yr from 1992 to 2011 (Shepherd et al. 2012), making it a significant contributor to sea-level rise. Part of the ice- sheet mass loss is the result of increased dynamic response of outlet glaciers (Rignot et al. 2011). The ice discharge from outlet glaciers can be quantified by coincident measurements of ice velocity and ice thickness (Thomas et al. 2000; van den Broeke et al. 2016). As part of the Programme for monitoring of the Greenland Ice Sheet (PROMICE; Ahlstrøm et al. 2008), three airborne surveys were carried out in 2007, 2011 and 2015, with the aim of measuring the changes in Greenland ice-sheet thicknesses. The purpose of the airborne surveys was to collect data to assess the dynamic mass loss of the Greenland ice sheet (Andersen et al. 2015). Here, we present these datasets of observations from ice-penetrating radar and airborne laser scanning, which, in combination, make us able to determine the ice thickness precisely. Surface-elevation changes between surveys are also presented, although we do not provide an in-depth scientific interpretation of these.


1998 ◽  
Vol 44 (148) ◽  
pp. 659-669 ◽  
Author(s):  
S. Gogineni ◽  
T. Chuah ◽  
C. Allen ◽  
K. Jezek ◽  
R. K. Moore

AbstractThe University of Kansas developed a coherent radar depth sounder during the 1980s. This system was originally developed for glacial ice-thickness measurements in the -Antarctic. During the field tests in the Antarctic and Greenland, we found the system performance to be less than optimum. The field tests in Greenland were performed in 1993, as a part of the NASA Program for Arctic Climate Assessment (PARCA). We redesigned and rebuilt this system to improve the performance.The radar uses pulse compression and coherent signal processing to obtain high sensitivity and fine along-track resolution. It operates at a center frequency of 150 MHz with a radio frequency bandwidth of about 17 MHz., which gives a range resolution of about 5m in ice. We have been operating it from a NASA P-3 aircraft for collecting ice-thickness data in conjunction with laser surface-elevation measurements over the Greenland ice sheet during the last 4years. We have demonstrated that this radar can measure the thickness of more than 3 km of cold ice and can obtain ice-thickness information over outlet glaciers and ice margins.In this paper we provide a brief survey of radar sounding of glacial ice, followed by a description of the system and subsystem design and performance. We also show sample results from the held experiments over the Greenland ice sheet and its outlet glaciers.


2002 ◽  
Vol 35 ◽  
pp. 73-78 ◽  
Author(s):  
David A. Braaten ◽  
S. Prasad Gogineni ◽  
Dilip Tammana ◽  
Saikiran Namburi ◽  
John Paden ◽  
...  

AbstractExtensive aircraft-based radar ice-thickness measurements over the interior and outlet-glacier regions of the Greenland ice sheet have been obtained by the University of Kansas since 1993, with the latest airborne surveys conducted in May 2001. the radar has evolved during this period to a highly versatile system capable of characterizing ice thickness over a wide variety of ice-sheet conditions. Before 1997, the digital system was limited, only capable of storing incoherent data or coherent data with a very large number of presumed signals at a low pulse-repetition frequency. In 1998, the radar was upgraded with modern components allowing coherent data to be stored with a small number of presumed returns for 1024 range cells at a high pulse-repetition frequency. the new data on ice thickness of Greenland outlet glaciers are archived and made available to the scientific community in the form of radar echograms and derived ice thickness at http://tornado.rsl.ukans.edu/Greenlanddata.htm. the U.S. National Snow and Ice Data Center (NSIDC) also provides a link to these data, and NSIDC will eventually serve as the permanent archive of these data. Improvements in radar sensitivity in outlet-glacier regions have been achieved by collecting coherent radar data and applying various signal-processing techniques. Deep outlet-glacier channels that were previously unresolved with incoherent data can now be mapped using a coherent signal, signal conditioning and synthetic aperture radar (SAR) processing.


1998 ◽  
Vol 44 (148) ◽  
pp. 659-669 ◽  
Author(s):  
S. Gogineni ◽  
T. Chuah ◽  
C. Allen ◽  
K. Jezek ◽  
R. K. Moore

Abstract The University of Kansas developed a coherent radar depth sounder during the 1980s. This system was originally developed for glacial ice-thickness measurements in the -Antarctic. During the field tests in the Antarctic and Greenland, we found the system performance to be less than optimum. The field tests in Greenland were performed in 1993, as a part of the NASA Program for Arctic Climate Assessment (PARCA). We redesigned and rebuilt this system to improve the performance. The radar uses pulse compression and coherent signal processing to obtain high sensitivity and fine along-track resolution. It operates at a center frequency of 150 MHz with a radio frequency bandwidth of about 17 MHz., which gives a range resolution of about 5m in ice. We have been operating it from a NASA P-3 aircraft for collecting ice-thickness data in conjunction with laser surface-elevation measurements over the Greenland ice sheet during the last 4years. We have demonstrated that this radar can measure the thickness of more than 3 km of cold ice and can obtain ice-thickness information over outlet glaciers and ice margins. In this paper we provide a brief survey of radar sounding of glacial ice, followed by a description of the system and subsystem design and performance. We also show sample results from the held experiments over the Greenland ice sheet and its outlet glaciers.


1989 ◽  
Vol 35 (121) ◽  
pp. 406-417 ◽  
Author(s):  
Niels Reeh

AbstractSimple analytical models are developed in order to study how up-stream variations in accumulation rate and ice thickness, and horizontal convergence/ divergence of the flow influence the age and annual layer-thickness profiles in a steady-state ice sheet. Generally, a decrease/increase of the accumulation rate and an increase/decrease of the ice thickness in the up-stream direction (i.e. opposite to the flow direction) results in older/younger ice at a given depth in the ice sheet than would result if the up-stream accumulation rate and ice thickness were constant along the flow line.Convergence/divergence of the up-stream flow will decrease/increase the effect of the accumulation-rate and ice-thickness gradients, whereas convergence/divergence has no influence at all on the age and layer-thickness profiles if the up-stream accumulation rate and ice thickness are constant along the flow line.A modified column-flow model, i.e. a model for which the strain-rate profile (or, equivalently, the horizontal velocity profile) is constant down to the depth corresponding to the Holocene/Wisconsinan transition 10 750 year BP., seems to work well for dating the ice back to 10 000–11 000 year B P. at sites in the slope regions of the Greenland ice sheet. For example, the model predicts the experimentally determined age profile at Dye 3 on the south Greenland ice sheet with a relative root-mean-square error of only 3% back to c. 10 700 year B.P. As illustrated by the Milcent location on the western slope of the central Greenland ice sheet, neglecting up-stream accumulation-rate and ice-thickness gradients, may lead to dating errors as large as 3000–000 years for c. 10 000 year old ice.However, even if these gradients are taken into account, the simple model fails to give acceptable ages for 10 000 year old ice at locations on slightly sloping ice ridges with strongly divergent flow, as for example the Camp Century location. The main reason for this failure is that the site of origin of the ice cannot be determined accurately enough by the simple models, if the flow is strongly divergent.With this exception, the simple models are well suited for dating the ice at locations where the available data or the required accuracy do not justify application of elaborate numerical models. The formulae derived for the age-depth profiles can easily be worked out on a pocket calculator, and in many cases will be a sensible alternative to using numerical flow models.


2014 ◽  
Vol 7 (1) ◽  
pp. 129-148 ◽  
Author(s):  
K. Lindbäck ◽  
R. Pettersson ◽  
S. H. Doyle ◽  
C. Helanow ◽  
P. Jansson ◽  
...  

Abstract. We present ice thickness and bed topography maps with high spatial resolution (250 to 500 m) of a and-terminating section of the Greenland Ice Sheet derived from combined ground-based and airborne radar surveys. The data have a total area of ~12000 km2 and cover the whole ablation area of the outlet glaciers of Isunnguata Sermia, Russell, Leverett, Ørkendalen and Isorlersuup up to the long-term mass balance equilibrium line altitude at ~1600 m above sea level. The bed topography shows highly variable subglacial trough systems, and the trough of the Isunnguata Sermia Glacier is over-deepened and reaches an elevation of several hundreds of meters below sea level. The ice surface is smooth and only reflects the bedrock topography in a subtle way, resulting in a highly variable ice thickness. The southern part of our study area consists of higher bed elevations compared to the northern part. The covered area is one of the most studied regions of the Greenland Ice Sheet with studies of mass balance, dynamics, and supraglacial lakes, and our combined dataset can be valuable for detailed studies of ice sheet dynamics and hydrology. The compiled datasets of ground-based and airborne radar surveys are accessible for reviewers (password protected) at doi.pangaea.de/10.1594/pangaea.830314 and will be freely available in the final revised paper.


1996 ◽  
Vol 23 ◽  
pp. 226-236 ◽  
Author(s):  
Philippe Huybrechts

A high-resolution, three-dimensional thermomechanical ice-sheet model, which includes isostasy, the possibility of ice-sheet expansion on the continental shelf and refined climatic parameterizations, was used to investigate the basal thermal regime of the Greenland ice sheet. The thermodynamic calculations take into account the usual terms of heat flow within the ice, a thermally active bedrock layer and all of the effects associated with changes in ice thickness and flow pattern. Basal temperature conditions are documented with respect to glacial–interracial shifts in climatic boundary conditions, both in steady state as during simulations over the last two glacial cycles using the GRIP δ180 record. It is found that the basal temperature field shows a large sensitivity in steady-state experiments but that, during a glacial cycle, basal temperature variations are strongly damped, in particular in central areas. A comparison has been made with measured data from deep ice cores and the implications are discussed.


1985 ◽  
Vol 31 (108) ◽  
pp. 198-200 ◽  
Author(s):  
Niels Reeh ◽  
Niels S. Gundestrup

AbstractThe mass balance of the Greenland ice sheet at Dye 3 is estimated on the basis of observations of ice thickness, accumulation rate, surface velocities, and surface strain-rates. The calculations indicate a rate of increase of surface elevation of 3 cm/year, with 95% confidence limits of −3 cm/year and +9 cm/year. Previous estimates of the mass balance of the Greenland ice sheet by the same method reported large imbalances; these are most probably due to lack of precise data and the use of quantities measured at the surface as representative of depth-averaged quantities. The most reliable observations indicate that the interior regions of the Greenland ice sheet are at present thickening at a rate of a few centimetres per year; a contributing cause for this may be the slow thinning of a bottom layer of relatively soft Wisconsin ice.


2019 ◽  
Vol 12 (6) ◽  
pp. 2481-2499 ◽  
Author(s):  
Sébastien Le clec'h ◽  
Aurélien Quiquet ◽  
Sylvie Charbit ◽  
Christophe Dumas ◽  
Masa Kageyama ◽  
...  

Abstract. Providing reliable projections of the ice sheet contribution to future sea-level rise has become one of the main challenges of the ice sheet modelling community. To increase confidence in future projections, a good knowledge of the present-day state of ice flow dynamics, which is critically dependent on basal conditions, is strongly needed. The main difficulty is tied to the scarcity of observations at the ice–bed interface at the scale of the whole ice sheet, resulting in poorly constrained parameterisations in ice sheet models. To circumvent this drawback, inverse modelling approaches can be developed to infer initial conditions for ice sheet models that best reproduce available data. Most often such approaches allow for a good representation of the mean present-day state of the ice sheet but are accompanied with unphysical trends. Here, we present an initialisation method for the Greenland ice sheet using the thermo-mechanical hybrid GRISLI (GRenoble Ice Shelf and Land Ice) ice sheet model. Our approach is based on the adjustment of the basal drag coefficient that relates the sliding velocities at the ice–bed interface to basal shear stress in unfrozen bed areas. This method relies on an iterative process in which the basal drag is periodically adjusted in such a way that the simulated ice thickness matches the observed one. The quality of the method is assessed by computing the root mean square errors in ice thickness changes. Because the method is based on an adjustment of the sliding velocities only, the results are discussed in terms of varying ice flow enhancement factors that control the deformation rates. We show that this factor has a strong impact on the minimisation of ice thickness errors and has to be chosen as a function of the internal thermal state of the ice sheet (e.g. a low enhancement factor for a warm ice sheet). While the method performance slightly increases with the duration of the minimisation procedure, an ice thickness root mean square error (RMSE) of 50.3 m is obtained in only 1320 model years. This highlights a rapid convergence and demonstrates that the method can be used for computationally expensive ice sheet models.


Sign in / Sign up

Export Citation Format

Share Document