scholarly journals The Greenland and Antarctic ice sheets under 1.5 °C global warming

2018 ◽  
Vol 8 (12) ◽  
pp. 1053-1061 ◽  
Author(s):  
Frank Pattyn ◽  
Catherine Ritz ◽  
Edward Hanna ◽  
Xylar Asay-Davis ◽  
Rob DeConto ◽  
...  
2020 ◽  
Author(s):  
Jonathan Donges ◽  
Nico Wunderling ◽  
Jürgen Kurths ◽  
Ricarda Winkelmann

<p>Tipping elements in the Earth's climate system are continental-scale subsystems that are characterized by a threshold behavior with potentially large short- to long-term impacts on human societies. It has been suggested that these include biosphere components (e.g. the Amazon rainforest and coral reefs), cryosphere components (e.g. the Greenland and Antarctic ice sheets) and large-scale atmospheric and oceanic circulations (e.g. the AMOC, ENSO and Indian summer monsoon). Interactions and feedbacks of climate tipping elements via various processes could increase the likelihood of crossing tipping points under a given level of global warming and interaction strength. However, studying these potential domino effects and tipping cascades with process-detailed state-of-the-art Earth system models is difficult so far, because relevant tipping elements are often not represented and uncertainties in their properties and interactions are large.</p><p>To bridge this current gap in the model hierarchy, we present a risk analysis approach based on a paradigmatic model of interacting tipping elements that propagates uncertainties in interaction structure, sign and strength as well as critical thresholds and other parameters via large Monte Carlo ensembles. Our approach allows to study the likelihood of domino effects and tipping cascades to emerge due to pairwise interactions and feedbacks to global mean temperature. We apply our approach to a subset of five potential tipping elements (Greenland and West Antarctic ice sheets, AMOC, Amazon rainforest and ENSO) with known parameter uncertainty estimates and find that their interactions overall tend to be destabilizing. The presented framework is flexible and can be adapted to study the interaction effects of other or additional tipping elements and more detailed submodels for describing their individual dynamics.</p>


The conclusion of this two day meeting finds us with a very great deal on which we may congratulate ourselves. In the first place there is the extremely large attendance, embracing scientists of all ages, and graced and illuminated by the attendance of many overseas colleagues of experience and distinction. In the second place we have the great range of scientific disciplines that are now applied to our field of study, many now extremely sophisticated, and the corresponding extension of Quaternary Studies into fields of evidence not hitherto exploited. In the early days of palynology of laminated lake sediments one could write of deciphering the ‘annals of the lakes’, but beginning by reading the record of lakes, peat bogs, coastal, fluviatile, glacial and periglacial geology, we have progressed to translating the long and detailed records of the deep oceans, and now the encapsulated history of the Arctic and Antarctic ice sheets. We have been introduced to the marvellous potential of the great CLIMAP Project, and all [biologists in the British Isles at least will now have to consider whether their hypotheses of past biotic history satisfy the new principle that we can all see emerging as ‘McIntyre’s Gate’.


2020 ◽  
Author(s):  
Martim Mas e Braga ◽  
Jorge Bernales ◽  
Matthias Prange ◽  
Arjen P. Stroeven ◽  
Irina Rogozhina

1983 ◽  
Vol 88 (C3) ◽  
pp. 1589 ◽  
Author(s):  
H. Jay Zwally ◽  
R. A. Bindschadler ◽  
A. C. Brenner ◽  
T. V. Martin ◽  
R. H. Thomas

1970 ◽  
Vol 9 (56) ◽  
pp. 263-268 ◽  
Author(s):  
F. Loewe

At places with an annual mean temperature lower than −20°C on the Greenland and Antarctic ice sheets, the temperature at a depth of 10 m is close to the annual mean at the surface and at the level of the meteorological shelter. With temperatures higher than about −35°C the size and sign of the différences vary. With lower temperatures the 10 m temperature becomes increasingly lower than the air temperature, at the coldest Antarctic station, “Plateau”, by nearly 4 deg.


2014 ◽  
Vol 26 (6) ◽  
pp. 724-741 ◽  
Author(s):  
Stewart S.R. Jamieson ◽  
Chris R. Stokes ◽  
Neil Ross ◽  
David M. Rippin ◽  
Robert G. Bingham ◽  
...  

AbstractIn 1976, David Sugden and Brian John developed a classification for Antarctic landscapes of glacial erosion based upon exposed and eroded coastal topography, providing insight into the past glacial dynamics of the Antarctic ice sheets. We extend this classification to cover the continental interior of Antarctica by analysing the hypsometry of the subglacial landscape using a recently released dataset of bed topography (BEDMAP2). We used the existing classification as a basis for first developing a low-resolution description of landscape evolution under the ice sheet before building a more detailed classification of patterns of glacial erosion. Our key finding is that a more widespread distribution of ancient, preserved alpine landscapes may survive beneath the Antarctic ice sheets than has been previously recognized. Furthermore, the findings suggest that landscapes of selective erosion exist further inland than might be expected, and may reflect the presence of thinner, less extensive ice in the past. Much of the selective nature of erosion may be controlled by pre-glacial topography, and especially by the large-scale tectonic structure and fluvial valley network. The hypotheses of landscape evolution presented here can be tested by future surveys of the Antarctic ice sheet bed.


1994 ◽  
Vol 9 (4-5) ◽  
pp. 213-219 ◽  
Author(s):  
Tamara Shapiro Ledley ◽  
Shaoping Chu
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document