scholarly journals Entropy generation of MHD flow of sodium alginate (C6H9NAO7) fluid in thermal engineering

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
T. N. Abdelhameed

AbstractIn this paper, impacts of magnetic field and porosity on the entropy generation of sodium-alginate (C6H9NaO7) fluid are studied. C6H9NaO7 is taken over a moving and heated vertical wall. Heat transfer is due to free convection. Initially, the problem is formulated in the form of PDEs along with physical conditions and then written in non-dimensional form. Problem is solved via Laplace transform and expression in analytical form is established for temperature and velocity field. The related relations for entropy generation and Bejan number and entropy generation are also examined. Nusselt number and Skin-friction are calculated and plotted in graphs. For numerical computations, a finite difference scheme is used using MATLAB software. The results in tables and graphs are discussed for embedded parameters. It is found that the magnetic field and porosity have strong influence on velocity, entropy generation and Bejan number. For greater Hartman number, entropy generation magnitude is greater compared to the Bejan number, conversely, this variation in Bejan number is more efficient. The porosity effect showed that if the medium is more porous, the entropy generation can decreases 50% when porosity increase from Ka = 1 to Ka = 2, however the Bejan number increases.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tarek N. Abdelhameed

AbstractThis article examines the entropy generation in the magnetohydrodynamics (MHD) flow of Newtonian fluid (water) under the effect of applied magnetic in the absence of an induced magnetic field. More precisely, the flow of water is considered past an accelerated plate such that the fluid is receiving constant heating from the initial plate. The fluid disturbance away from the plate is negligible, therefore, the domain of flow is considered as semi-infinite. The flow and heat transfer problem is considered in terms of differential equations with physical conditions and then the corresponding equations for entropy generation and Bejan number are developed. The problem is solved for exact solutions using the Laplace transform and finite difference methods. Results are displayed in graphs and tables and discussed for embedded flow parameters. Results showed that the magnetic field has a strong influence on water flow, entropy generation, and Bejan number.


2021 ◽  
Vol 51 (4) ◽  
pp. 269-276
Author(s):  
Oluwole Daniel Makinde ◽  
Adetayo Samuel Eegunjobi

This paper examines the aggregate impacts of magnetic field, thermophoresis, Brownian motion, variable viscosity, chemical reaction and radiative heat flux on the thermal putrefaction and immanent irreversibility of a channelling nanoliquid film flowing along with a slanted heated permeable plate. Following Buongiorno approach, the two-phase nanoliquid nonlinear model is obtained and addressed numerically using shooting technique as well as the Runge-Kutta- Fehlberg integration scheme. Effects of various emerging parameters on the overall flow structure with heat and mass transfer characteristics including entropy generation rate and Bejan number are displayed using diagrams and discussed. It is found that the entropy generation rate lessened with an upsurge in a magnetic field but heightened with an elevation in the buoyancy forces.


2021 ◽  
Vol 13 (3) ◽  
pp. 168781402110065
Author(s):  
Hu Ge-JiLe ◽  
Sumaira Qayyum ◽  
Faisal Shah ◽  
M Ijaz Khan ◽  
Sami Ullah Khan

The growing development in the thermal engineering and nano-technology, much attention has been paid on the thermal properties of nanoparticles which convey many applications in industrial, technological and medical era of sciences. The noteworthy applications of nano-materials included heat transfer enhancement, thermal energy, solar systems, cooling of electronics, controlling the heat mechanisms etc. Beside this, entropy generation is an optimized scheme which reflects significances in thermodynamics systems to control the higher energy efficiency. On this end, present work presents the slip flow of Jeffrey nanofluid over a stretching sheet with applications of activation energy and viscous dissipation. The entropy generation features along with Bejan number significance is also addressed in present analysis. Buongiorno model of nanofluid is used to discuss the heat and mass transfer. The formulated flow equations are attained into non-dimensional form. An appropriate ND MATHEMATICA built-in scheme is used to find the solution. The solution confirmation is verified by performing the error analysis. For developed flow model and impacted parameters, a comprehensive graphical analysis is performed. It is observed that slip phenomenon is used to decays the velocity profile. Temperature and concentration are in direct relation with Brownian motion parameter and activation energy respectively. Entropy and Bejan number have same results for greater diffusion parameter.


2017 ◽  
Vol 377 ◽  
pp. 42-61 ◽  
Author(s):  
Sanatan Das ◽  
Rabindra Nath Jana ◽  
Oluwole Daniel Makinde

In this investigation, a magnetohydrodynamic (MHD) flow of AlO /water nanofluid and Cu-AlO /water hybrid nanofluid through a porous channel is analyzed in the presence of a transverse magnetic field. An exact solution of the governing equations has been obtained in closed form. The entropy generation number and the Bejan number are also obtained. The influences of each of the governing parameters on velocity, temperature, entropy generation and Bejan number are displayed graphically and the physical aspects are discussed. In addition, a comparison of the heat transfer enhancement level due to the suspension of AlO and Cu nanoparticles in water as regular nanofluids and as hybrid Cu-AlO /water nanofluid is reported.


Author(s):  
M. Venkateswarlu ◽  
P. Bhaskar

The analysis of MHD flow has been a concern of consideration for research scientists and engineers. In this treatise, the steady MHD flow of an incompressible and electrically conducting Casson fluid in a micro-channel with heat generation and viscous dissipation, in the presence of hydrodynamic slip and convective boundary conditions, is examined. Exact solutions of non-dimensional steady governing equations are obtained in closed form. Transient fluid velocity, temperature, entropy generation, and Bejan number are depicted by the line graphs whereas rate of heat transfer and skin-friction coefficient are computed in tabular form for pertinent flow parameters. It is established that the entropy generation rate and Bejan number increases for increasing values of the Casson parameter and heat generation parameter. In particular, the Casson parameter accelerates the skin-friction coefficient while it provides resistance to the rate of heat transfer near the channel walls. Casson fluid finds significant applications in biomechanics, polymer processing industries, and food processing.


2020 ◽  
Vol 34 (33) ◽  
pp. 2050383
Author(s):  
Sumaira Qayyum ◽  
M. Ijaz Khan ◽  
Wathek Chammam ◽  
W. A. Khan ◽  
Zulfiqar Ali ◽  
...  

Here our purpose is to explore the entropy generation in nanofluid MHD flow by curved stretching sheet; second-order slip is considered. Additional effects of viscous dissipation, Joule heating, and activation energy are taken. Temperature and concentration boundary conditions are considered convectively. For convergence of series solution NDSolve MATHEMATICA is used. Velocity, Bejan number, concentration, temperature, and entropy generation graphs are sketched for important parameters. For greater estimations of first- and second-order velocity slip parameters fluid velocity reduces. The thermal and solutal Biot numbers enhance the temperature and concentration, respectively. The concentration also has direct relation with activation energy. Entropy generation reduces for chemical reaction parameter and first- and second-order slip parameters.


2019 ◽  
Vol 29 (10) ◽  
pp. 3795-3821
Author(s):  
Sumaira Qayyum ◽  
Muhammad Ijaz Khan ◽  
Tasawar Hayat ◽  
Ahmed Alsaedi

Purpose The purpose of this study is to analyze the Entropy generation analysis and heat transport in three-dimensional flow between two stretchable disks. Joule heating and heat generation/absorption are incorporated in the thermal equation. Thermo-diffusion effect is also considered. Flow is conducting for time-dependent applied magnetic field. Induced magnetic field is not taken into consideration. Velocity and thermal slip conditions at both the disks are implemented. The flow problem is modeled by using Navier–Stokes equations with entropy generation rate and Bejan number. Design/methodology/approach Von Karman transformations are used to reduce the nonlinear governing expressions into an ordinary one and then tackled by homotopy analysis method for convergent series solutions. The nonlinear expressions for total entropy generation rate are obtained with appropriate transformations. The impacts of different flow variables on velocity, temperature, entropy generation rate and Bejan number are described graphically. Velocity, temperature and concentration gradients are discussed in the presence of flow variables. Findings Axial, radial and tangential velocity profiles show decreasing trend for larger values of velocity slip parameters. For a larger Brinkman number, the entropy generation increases, while a decreasing trend is noticed for Bejan number. Originality/value To the best of the authors’ knowledge, no such analyses have been reported in the literature.


Entropy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 359 ◽  
Author(s):  
Arshad Khan ◽  
Faizan ul Karim ◽  
Ilyas Khan ◽  
Tawfeeq Alkanhal ◽  
Farhad Ali ◽  
...  

The current work will describe the entropy generation in an unsteady magnetohydrodynamic (MHD) flow with a combined influence of mass and heat transfer through a porous medium. It will consider the flow in the XY plane and the plate with isothermal and ramped wall temperature. The wall shear stress is also considered. The influences of different pertinent parameters on velocity, the Bejan number and on the total entropy generation number are reported graphically. Entropy generation in the fluid is controlled and reduced on the boundary by using wall shear stress. It is observed in this paper that by taking suitable values of pertinent parameters, the energy losses in the system can be minimized. These parameters are the Schmitt number, mass diffusion parameter, Prandtl number, Grashof number, magnetic parameter and modified Grashof number. These results will play an important role in the heat flow of uncertainty and must, therefore, be controlled and managed effectively.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
K. S. Balamurugan ◽  
N. Udaya Bhaskara Varma ◽  
J. L. Ramaprasad

AbstractThe current investigation is concerned with heat transfer and entropy generation analysis in a horizontal channel brimming with porous medium in the existence of aligned magnetic field, viscous and joules dissipation and temperature gradient heat source. The boundary conditions are treated as constant values for velocity and temperature at lower and upper walls. An explicit solution of governing equations has been attained in closed system. The repercussions of pertinent parameters on the fluid velocity, temperature, entropy generation and Bejan number are conferred and scrutinized through graphs in detail. Additionally the expressions for shear stress and the rate of heat transfer coefficients at the channel walls are derived and results obtained are physically interpreted through tables. From the conquered results, it is addressed that Brinkman number Br enhances boundary layer thickness. Entropy generation increases with intensifying values of $$M$$ M , aligned angle ϕ, temperature gradient heat source parameter Q, characteristic temperature ration $$\omega$$ ω and permeability parameter K. The shear stress is same at both the lower and upper walls.


Author(s):  
Y. M. Aiyesimi ◽  
M. Jiya ◽  
G. A. Bolarin ◽  
O. V. Akinremi

The combined effects of chemical reaction, radially applied magnetic field and Hall effect on entropy generation of a steady third grade magnetohydrodynamic fluid flowing through a uniformly circular pipe was studied. The governing equations are presented and the resulting non-linear dimensionless equations are solved numerically using Galerkin Weighted Residual Method. The velocity, temperature and concentration profile were obtained and utilized in computing the entropy number. A parametric study of germane parameters involved are presented graphically and discussed. It was observed that irreversibility due to heat transfer dominates the flow compared to fluid friction and Hall parameter inhibits the Bejan number while Magnetic parameter enhances the Bejan number.


Sign in / Sign up

Export Citation Format

Share Document