Stationary Kirchhoff equations involving critical growth and vanishing potential

2020 ◽  
Vol 26 ◽  
pp. 74
Author(s):  
João Marcos do Ó ◽  
Marco Souto ◽  
Pedro Ubilla

We establish the existence of positive solutions for a class of stationary Kirchhoff-type equations defined in the whole ℝ3 involving critical growth in the sense of the Sobolev embedding and potentials, which may decay to zero at infinity. We use minimax techniques combined with an appropriate truncated argument and a priori estimate. These results are new even for the local case, which corresponds to nonlinear Schrödinger equations.

2021 ◽  
pp. 2150082
Author(s):  
Pengfei Li ◽  
Junhui Xie

In this paper, we consider a [Formula: see text]-Kirchhoff problem with Dirichlet boundary problem in a bounded domain. Under suitable conditions, we get a priori estimates for positive solutions to an auxiliary problem by the well-known blow-up argument. As an application, a existence result for positive solutions is proved by the topological degree theory.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Ran Zhuo ◽  
Yan Li

<p style='text-indent:20px;'>We consider the nonlinear fractional elliptic system</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \left\{\begin{array}{ll} (- \Delta)^{\frac{\alpha_1}{2}}u(x) = f(x, u, v), &amp; \text{in}\, \, \, \Omega, \\ (- \Delta)^{\frac{\alpha_2}{2}}v(x) = g(x, u, v), &amp; \text{in}\, \, \, \Omega, \\ u = v = 0, &amp; \text{in}\, \, \, \mathbb{R}^n\setminus\Omega, \end{array} \right. \label{a-1.2} \end{equation*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ 0&lt;\alpha_1, \alpha_2&lt;2 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M2">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> is a bounded domain with <inline-formula><tex-math id="M3">\begin{document}$ C^2 $\end{document}</tex-math></inline-formula> boundary in <inline-formula><tex-math id="M4">\begin{document}$ \mathbb{R}^n $\end{document}</tex-math></inline-formula>. To overcome the technical difficulty due to the different fractional orders, we employ two distinct methods and derive the a priori estimates for <inline-formula><tex-math id="M5">\begin{document}$ 0&lt;\alpha_1, \alpha_2&lt;1 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M6">\begin{document}$ 1&lt;\alpha_1, \alpha_2 &lt;2 $\end{document}</tex-math></inline-formula> respectively. Moreover, combining the a priori estimate with the topological degree theory, we prove the existence of positive solutions.</p>


2018 ◽  
Vol 26 (1) ◽  
pp. 5-41 ◽  
Author(s):  
Baoqiang Yan ◽  
Donal O’Regan ◽  
Ravi P. Agarwal

Abstract In this paper we discuss the existence of a solution between wellordered subsolution and supersolution of the Kirchhoff equation. Using the sub-supersolution method together with a Rabinowitz-type global bifurcation theory, we establish the existence of positive solutions for Kirchhoff-type problems when the nonlinearity is singular or sign-changing. Moreover, we obtain some necessary and sufficient conditions for the existence of positive solutions for the problem when N = 1.


2021 ◽  
Vol 11 (1) ◽  
pp. 598-619
Author(s):  
Guofeng Che ◽  
Tsung-fang Wu

Abstract We study the following Kirchhoff type equation: − a + b ∫ R N | ∇ u | 2 d x Δ u + u = k ( x ) | u | p − 2 u + m ( x ) | u | q − 2 u     in     R N , $$\begin{equation*}\begin{array}{ll} -\left(a+b\int\limits_{\mathbb{R}^{N}}|\nabla u|^{2}\mathrm{d}x\right)\Delta u+u =k(x)|u|^{p-2}u+m(x)|u|^{q-2}u~~\text{in}~~\mathbb{R}^{N}, \end{array} \end{equation*}$$ where N=3, a , b > 0 $ a,b \gt 0 $ , 1 < q < 2 < p < min { 4 , 2 ∗ } $ 1 \lt q \lt 2 \lt p \lt \min\{4, 2^{*}\} $ , 2≤=2N/(N − 2), k ∈ C (ℝ N ) is bounded and m ∈ L p/(p−q)(ℝ N ). By imposing some suitable conditions on functions k(x) and m(x), we firstly introduce some novel techniques to recover the compactness of the Sobolev embedding H 1 ( R N ) ↪ L r ( R N ) ( 2 ≤ r < 2 ∗ ) $ H^{1}(\mathbb{R}^{N})\hookrightarrow L^{r}(\mathbb{R}^{N}) (2\leq r \lt 2^{*}) $ ; then the Ekeland variational principle and an innovative constraint method of the Nehari manifold are adopted to get three positive solutions for the above problem.


Author(s):  
Л.М. Энеева

В работе исследуется обыкновенное дифференциальное уравнение дробного порядка, содержащее композицию дробных производных с различными началами, с переменным потенциалом. Рассматриваемое уравнение выступает модельным уравнением движения во фрактальной среде. Для исследуемого уравнения доказана априорная оценка решения смешанной двухточечной краевой задачи. We consider an ordinary differential equation of fractional order with the composition of leftand right-sided fractional derivatives, and with variable potential. The considered equation is a model equation of motion in fractal media. We prove an a priori estimate for solutions of a mixed two-point boundary value problem for the equation under study.


Sign in / Sign up

Export Citation Format

Share Document