The mathematical models for cutting force calculation during structural and corrosion-resistant steels` parts processing
The paper shows that conventional mathematical models for calculating the cutting force components during the turning process, represented in reference guides on engineering, give drastic errors reaching 100 percent or more for various tool-workpiece couples. These errors interfere with applying reference values of the cutting force for any further calculations, equipment selection, workpiece positioning scheme, workpiece deformation value due to the elastic of the technological system elements during processing and etc., because of the insufficient reliability of the results of such calculations. The paper proposes mathematical models obtained as a result of experimental studies, which allow for increasing the accuracy of the calculation of the components of the cutting force by introducing an additional parameter – i.e., the value of thermo EMF of the test running into the calculation formulas. This approach enables to reduce the error in the calculation of the components of the cutting force up to ± 15%. In addition, the need for the development of specific mathematical models for various groups of materials machined is shown, which is due to the peculiarities of contact processes in the machining of various groups of steels, as well as to qualitative and quantitative indicators of the thermo-physical properties of the materials of tool-workpiece contact couples.