Numerical Simulation of Spatial Fluctuating Wind Field on Long Span Bridges

Author(s):  
Longsheng Bao ◽  
Ketong Liu ◽  
Ling Yu ◽  
Wenbiao Wang ◽  
Hong Niu
Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1633
Author(s):  
Yang Ding ◽  
Shuang-Xi Zhou ◽  
Yong-Qi Wei ◽  
Tong-Lin Yang ◽  
Jing-Liang Dong

Wind field (e.g., wind speed and wind direction) has the characteristics of randomness, nonlinearity, and uncertainty, which can be critical and even destructive on a long-span bridge’s hangers, such as vortex shedding, galloping, and flutter. Nowadays, the finite element method is widely used for model calculation, such as in long-span bridges and high-rise buildings. In this study, the investigated bridge hanger model was established by COMSOL Multiphysics software, which can calculate fluid dynamics (CFD), solid mechanics, and fluid–solid coupling. Regarding the wind field of bridge hangers, the influence of CFD models, wind speed, and wind direction are investigated. Specifically, the bridge hanger structure has symmetrical characteristics, which can greatly reduce the calculation efficiency. Furthermore, the von Mises stress of bridge hangers is calculated based on fluid–solid coupling.


2019 ◽  
Vol 19 (12) ◽  
pp. 1950149
Author(s):  
Shenghong Huang ◽  
Qiusheng Li ◽  
Man Liu ◽  
Fubin Chen ◽  
Shun Liu

Wind-driven rain (WDR) and its interactions with structures is an important research subject in wind engineering. As bridge spans are becoming longer and longer, the effects of WDR on long-span bridges should be well understood. Therefore, this paper presents a comprehensive numerical simulation study of WDR on a full-scale long-span bridge under extreme conditions. A validation study shows that the predictions of WDR on a bridge section model agree with experimental results, validating the applicability of the WDR simulation approach based on the Eulerian multiphase model. Furthermore, a detailed numerical simulation of WDR on a long-span bridge, North Bridge of Xiazhang Cross-sea Bridge is conducted. The simulation results indicate that although the loads induced by raindrops on the bridge surfaces are very small as compared to the wind loads, extreme rain intensity may occur on some windward surfaces of the bridge. The adopted numerical methods and rain loading models are validated to be an effective tool for WDR simulation for bridges and the results presented in this paper provide useful information for the water-erosion proof design of future long-span bridges.


2011 ◽  
Vol 90-93 ◽  
pp. 2451-2455
Author(s):  
Yi Feng Huang ◽  
Ji Xin Yang

The simplified of fluctuating wind field and the basic theory of Spectral Proper Transformation(SPT)were expatiated. SPT was used to simulate the random wind field on long-span cable-stayed bridge, then the random wind field of the bridge was simulated by MATLAB program, an actual example was used to validate the validity and correctness of the MATLAB program. The results showed that SPT had the advantage of explicit physical meaning, high computational efficiency. It is an effective method to simulate the random wind field.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Peng Hu ◽  
Yilin Chen ◽  
Yan Han ◽  
Fei Zhang ◽  
Yongjian Tang

To investigate the effects of thunderstorm downburst on the characteristics of wind field at bridge sites in flat and gorge terrains, firstly, numerical simulation of wind fields in the flat terrain under the thunderstorm downburst was conducted through the SST k-ω turbulence model, combined with the impinging jet technology. After verification of the reliability of the numerical model, settings, and methods, the characteristics of wind field over a long-span bridge site in a gorge terrain under the thunderstorm downburst were investigated and the distributions of wind speed and wind attack angle in the flat and gorge terrains were compared. The results show that, under the effects of the thunderstorm downburst, the wind speeds are relatively maximum at the midspan point of the girder in the flat terrain. Besides, the farther away from the midspan point, the smaller the wind speeds, which is opposite to the case in the gorge terrain. The wind speeds at each typical monitoring point are basically the same in the two terrains, before the thunderstorm downburst hits the bridge girder. Later the wind speeds at each point in the gorge terrain are much higher than those in the flat terrain. Most wind attack angles are negative at the monitoring points in the flat terrain, but the farther away they are from the midspan point, the greater the wind attack angles will be. However, the wind attack angles at the monitoring points in the gorge terrain are generally larger than those in the flat terrain, and they gradually turn to be positive farther away from the midspan point. In the flat terrain, both wind speeds and wind attack angles (or their absolute values) at the girder are large within about t = 75∼130 s, indicating that the thunderstorm downburst may exert significant effects on the bridge. However, in the gorge terrain, due to the large wind speeds and wind attack angles (or their absolute values) at the girder after t = 75 s, full attention needs to be paid to the effects of the thunderstorm downburst during this period.


2019 ◽  
Vol 9 (24) ◽  
pp. 5506
Author(s):  
Zidong Xu ◽  
Hao Wang ◽  
Han Zhang ◽  
Kaiyong Zhao ◽  
Hui Gao ◽  
...  

Numerical simulation of the turbulent wind field on long-span bridges is an important task in structural buffeting analysis when it comes to the system non-linearity. As for non-stationary extreme wind events, some efforts have been paid to update the classic spectral representation method (SRM) and the fast Fourier transform (FFT) has been introduced to improve the computational efficiency. Here, the non-negative matrix factorization-based FFT-aided SRM has been updated to generate not only the horizontal non-stationary turbulent wind field, but also the vertical one. Specifically, the evolutionary power spectral density (EPSD) is estimated to characterize the non-stationary feature of the field-measured wind data during Typhoon Wipha at the Runyang Suspension Bridge (RSB) site. The coherence function considering the phase angles is utilized to generate the turbulent wind fields for towers. The simulation accuracy is validated by comparing the simulated and target auto-/cross-correlation functions. Results show that the updated method performs well in generating the non-stationary turbulent wind field. The obtained wind fields will provide the research basis for analyzing the non-stationary buffeting behavior of the RSB and other wind-sensitive structures in adjacent regions.


2013 ◽  
Vol 361-363 ◽  
pp. 1094-1100
Author(s):  
Jian Guo ◽  
Wei Chang Gan ◽  
Ding Yu Jiang ◽  
Bing Nan Sun ◽  
Wei Peng

In the research on calculation of interaction of wind and structure, the key to the question is wind field numerical simulation. This paper introduces a practical wind field simulation method of long-span Bridge. The main bridge of Jintang Bridge was analyzed as engineering example, which is a cross-sea cable stayed bridge in Zhoushan of Zhejiang Province , and the linear filter method was applied to calculate along-wind and vertical wind field on main girder, MATLAB program also was adopted to simulate wind field of long-span Bridge. The results show that simulated spectrum is in better agreement with the target spectrum, which verifies validity of the method and correctness of the program.


2012 ◽  
Vol 29 (5) ◽  
pp. 432-437
Author(s):  
Heng-bin ZHENG ◽  
Quan-sheng YAN ◽  
Wei-feng WANG ◽  
Jie WU

2018 ◽  
Vol 23 (3) ◽  
pp. 04017147 ◽  
Author(s):  
Tianyou Tao ◽  
Hao Wang ◽  
Chengyuan Yao ◽  
Xuhui He ◽  
Ahsan Kareem

2011 ◽  
Vol 255-260 ◽  
pp. 4202-4206
Author(s):  
Yue Zhang ◽  
Mi Zhou

The area of mountain ridge accounts for the most part of our country land. With the development of economic construction, more and more long span bridges have been built in the mountainous region of the western in China.. Combining live observed wind with numeric simulation, the wind characteristics on the western gap of valley areas are studied. On the one hand through the self-development processing of the bridge speed data to analyze massive wind observation data, the parameters (such as wind speed profile, turbulence intensity, power spectral density) used as the main basis for calculating wind loads are achieved. On the other hand wind flow around the bridge site as well as the environment around the mountain wind flow, wind speed field and the distribution of turbulent flow, etc is obtained by using CFD technology. Based on the results that is compared with that of numerical simulation by FLUENT, the reliability and efficiency of the program is testified. It would be provided with great theoretical significance and practical engineering value passes through the foregoing study.


Sign in / Sign up

Export Citation Format

Share Document