Laser-induced phase conversion of n-type SnSe2 to p-type SnSe

2022 ◽  
Author(s):  
Qi Zheng ◽  
Rong Yang ◽  
Kang Wu ◽  
Xiao Lin ◽  
Shixuan Du ◽  
...  

Abstract We report a facile phase conversion method that can locally convert n-type SnSe2 into p-type SnSe by direct laser irradiation. Raman spectra of SnSe2 flakes before and after laser irradiation confirm the phase conversion of SnSe2 to SnSe. By performing the laser irradiation on SnSe2 flakes at different temperatures, it is found that laser heating effect induces the removal of Se atoms from SnSe2 and results in the phase conversion of SnSe2 to SnSe. Lattice-revolved transmission electron microscope images of SnSe2 flakes before and after laser irradiation further confirm such conversion. By selective laser irradiation on SnSe2 flakes, a pattern with SnSe2/SnSe heteostructures is created. This indicates that the laser induced phase conversion technique has relatively high spatial resolution and enables the creation of micron-sized in-plane p-n junction at predefined region.

2006 ◽  
Vol 527-529 ◽  
pp. 887-890
Author(s):  
Hyung Seok Lee ◽  
Martin Domeij ◽  
Carl Mikael Zetterling ◽  
Mikael Östling ◽  
Jun Lu

One important challenge in SiC Bipolar Junction Transistor (BJT) fabrication is to form good ohmic contacts to both n-type and p-type SiC. In this paper, we have examined contact study in a SiC BJT process with sputter deposition of titanium tungsten contacts to both n-type and p-type regions followed by annealing at different temperatures between 750 oC and 950 oC. The contacts were characterized using linear transmission line method (LTLM) structures. To see the formation of compound phases, X-ray Diffraction (XRD) θ-2θ scans were performed before and after annealing. The results indicate that 5 minutes annealing at 950 oC of the n+ contact is sufficient whereas the p+ contacts remain non-ohmic after 30 minutes annealing. The n+ emitter structure contact resistivity after 5 min annealing with 750 oC and 950 oC was 1.08 × 10-3 5cm2 and 4.08 × 10-4 5cm2, respectively. Small amorphous regions of silicon and carbon as well as titanium tungsten carbide regions were observed by high-resolution transmission electron microscopy (HRTEM), whereas less carbide formation and no amorphous regions were found in a sample with unsuccessful formation of TiW ohmic contacts.


2015 ◽  
Vol 60 (3) ◽  
pp. 2131-2137 ◽  
Author(s):  
M. Gruber ◽  
S. Ploberger ◽  
G. Ressel ◽  
M. Wiessner ◽  
M. Hausbauer ◽  
...  

Abstract The stability of austenite is one of the most dominant factors affecting the toughness properties of high Co-Ni steels such as Aermet 100 and AF1410. Thus, the aim of this work was to get a deeper understanding on the impact of combined heat and cryogenic treatment on the stability of retained and reverted austenite. In order to characterize the evolution of the phase fraction of austenite during tempering at different temperatures and times, X-ray diffraction analyses were carried out. The stability of austenite, which was formed during tempering, was analyzed with dilatometric investigations by studying the transformation behavior of the austenite during cooling from tempering temperature down to −100°C. Additionally, transmission electron microscopy investigations were performed to characterize the chemical composition and phase distribution of austenite and martensite before and after tempering.


2019 ◽  
Vol 10 ◽  
pp. 634-643 ◽  
Author(s):  
Srashti Gupta ◽  
Dinesh Chandra Agarwal ◽  
Bathula Sivaiah ◽  
Sankarakumar Amrithpandian ◽  
Kandasami Asokan ◽  
...  

The present study aims to see the enhancement in thermoelectric properties of bismuth telluride (Bi2Te3) annealed at different temperatures (573 and 773 K) through silver (Ag) nano-inclusions (0, 2, 5, 10, 15 and 20 wt %). Transmission electron microscopy (TEM) images of Ag incorporated in Bi2Te3 annealed at 573 K shows tubular, pentagonal, trigonal, circular and hexagonal nanoparticles with sizes of 6–25 nm (for 5 wt % Ag ) and 7–30 nm (for 20 wt % Ag). Ag incorporated in Bi2Te3 annealed at 773 K shows mainly hexagonally shaped structures with particle sizes of 2–20 nm and 40–80 nm (for 5 wt % Ag) and 10–60 nm (for 20 wt % Ag). Interestingly, the samples annealed at 573 K show the highest Seebeck coefficient (S, also called thermopower) at room temperature (p-type behavior) for 5% Ag which is increased ca. five-fold in comparison to Ag-free Bi2Te3, whereas for samples with the same content (5% Ag) annealed at 773 K the increment in thermopower is only about three-fold with a 6.9-fold enhancement of the power factor (S 2σ). The effect of size and shape of the nanoparticles on thermoelectric properties can be understood on the basis of a carrier-filtering effect that results in an increase in thermopower along with a control over the reduction in electrical conductivity to maintain a high power factor yielding a high figure of merit.


2021 ◽  
Author(s):  
G. Kavitha ◽  
K. Thanigai Arul ◽  
Manikandan Elayaperumal

Abstract The semiconductor-transition conducting metal oxides (p-type NiO: n-type ZnO) nanocomposites (NCs) called (NZO) are successfully prepared by a simple wet-chemical route followed by the systematic sintering at different temperatures such as 400°C, 500°C, 600°C, and 700 °C. The structure and morphology of the samples were characterized by X-ray diffraction (XRD), high-resolution scanning/transmission electron microscopy (HR-SEM/TEM), and energy-dispersive X-ray spectrometry (EDX) techniques. XRD analysis reveals that the average crystallite size of the NZO NCs was found to be in the range 16-18 nm. The synthesized sample discloses a ferromagnetic behavior. The photocatalytic degradation of rhodamine B in an aqueous solution was superior at the NZO NC at 600 °C in comparison with other samples. Here, the NZO NCs display to be good candidates for magnetic and photocatalytic application.


Author(s):  
Fei Jiao ◽  
Chong-an Di ◽  
Yimeng Sun ◽  
Peng Sheng ◽  
Wei Xu ◽  
...  

In this article, we put forward a simple method for the synthesis of thermoelectric (TE) composite materials. Both n- and p-type composites were obtained by ball-milling the insoluble and infusible metal coordination polymers with other polymer solutions. The particle size, film morphology and composition were characterized by dynamic light scattering, scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy. The TE properties of the drop-cast composite film were measured at different temperatures. An inkjet-printed flexible device was fabricated and the output voltage and short-circuit current at various hot-side temperatures ( T hot ) and temperature gradients (Δ T ) were tested. The composite material not only highly maintained the TE properties of the pristine material but also greatly improved its processability. This method can be extended to other insoluble and infusible TE materials for solution-processed flexible TE devices.


Author(s):  
T. C. Tisone ◽  
S. Lau

In a study of the properties of a Ta-Au metallization system for thin film technology application, the interdiffusion between Ta(bcc)-Au, βTa-Au and Ta2M-Au films was studied. Considered here is a discussion of the use of the transmission electron microscope(TEM) in the identification of phases formed and characterization of the film microstructures before and after annealing.The films were deposited by sputtering onto silicon wafers with 5000 Å of thermally grown oxide. The film thicknesses were 2000 Å of Ta and 2000 Å of Au. Samples for TEM observation were prepared by ultrasonically cutting 3mm disks from the wafers. The disks were first chemically etched from the silicon side using a HNO3 :HF(19:5) solution followed by ion milling to perforation of the Au side.


Author(s):  
E.G. Bithell ◽  
W.M. Stobbs

It is well known that the microstructural consequences of the ion implantation of semiconductor heterostructures can be severe: amorphisation of the damaged region is possible, and layer intermixing can result both from the original damage process and from the enhancement of the diffusion coefficients for the constituents of the original composition profile. A very large number of variables are involved (the atomic mass of the target, the mass and energy of the implant species, the flux and the total dose, the substrate temperature etc.) so that experimental data are needed despite the existence of relatively well developed models for the implantation process. A major difficulty is that conventional techniques (e.g. electron energy loss spectroscopy) have inadequate resolution for the quantification of any changes in the composition profile of fine scale multilayers. However we have demonstrated that the measurement of 002 dark field intensities in transmission electron microscope images of GaAs / AlxGa1_xAs heterostructures can allow the measurement of the local Al / Ga ratio.


Author(s):  
W. D. Cooper ◽  
C. S. Hartley ◽  
J. J. Hren

Interpretation of electron microscope images of crystalline lattice defects can be greatly aided by computer simulation of theoretical contrast from continuum models of such defects in thin foils. Several computer programs exist at the present time, but none are sufficiently general to permit their use as an aid in the identification of the range of defect types encountered in electron microscopy. This paper presents progress in the development of a more general computer program for this purpose which eliminates a number of restrictions contained in other programs. In particular, the program permits a variety of foil geometries and defect types to be simulated.The conventional approximation of non-interacting columns is employed for evaluation of the two-beam dynamical scattering equations by a piecewise solution of the Howie-Whelan equations.


Author(s):  
John B. Vander Sande ◽  
Thomas F. Kelly ◽  
Douglas Imeson

In the scanning transmission electron microscope (STEM) a fine probe of electrons is scanned across the thin specimen, or the probe is stationarily placed on a volume of interest, and various products of the electron-specimen interaction are then collected and used for image formation or microanalysis. The microanalysis modes usually employed in STEM include, but are not restricted to, energy dispersive X-ray analysis, electron energy loss spectroscopy, and microdiffraction.


2017 ◽  
Vol 13 (2) ◽  
pp. 4640-4647
Author(s):  
A. M. Abdelghany ◽  
M.S. Meikhail ◽  
S.I. Badr ◽  
A. S. Momen

Thin film samples of pristine polyvinyl chloride (PVC), poly vinyldine fluoride (PVDF) in combination with their blend in addition to samples containing factorial mass fraction of multi wall carbon nano-tubes (MWCNTs) in the dopant level were prepared via routine casting technique using tetrahydrofurane (THF) as a common solvent. X-ray diffraction and transmission electron microscopy (TEM) depict the nano-scale (15-25 nm) of functionalized MWCNTs with no surface damage results from functionalization process.X-ray diffraction (XRD) shows a semi-crystalline nature of PVDF with evidence for more than one phase namely a and b phases. The fraction of b phase was calculated and correlated to the dopant content. FTIR optical absorption spectra revels a preservation of the main vibrational bands before and after addition of MWCNTs in the doping level with a presence of new small band 1151 cm-1 assigned for the interaction and complexation between constituents.


Sign in / Sign up

Export Citation Format

Share Document