scholarly journals Studying Dynamic Ocean Topography in Indonesia Sea Based on Satellite Altimetry

2021 ◽  
Vol 925 (1) ◽  
pp. 012062
Author(s):  
Dina A Sarsito ◽  
Muhammad Syahrullah ◽  
Dudy D Wijaya ◽  
Dhota Pradipta ◽  
Heri Andreas

Abstract Dynamic Ocean Topography is a part of sea surface variabilities derived from Sea Surface Topography as a time-dependent component. The Dynamic Ocean Topography height in this study was determined using the geodetic method of instantaneous sea level height measurement from satellite altimetry technology. In the territory of Indonesia seas, a picture of the long-wavelength phenomenon from the Dynamic Ocean Topography ranges from 0-2.5 meters with three distribution zones of low, medium, and high value. At the same time, the correlation with the positive value of Steric Sea Level Rise was obtained in almost all parts of Indonesia except for the area in the southern part of Java Island around Longitude 1070E and in the Pacific Ocean region, where that is thought to be caused by the existence of several permanent marine high-frequency physical phenomenon but with an indefinite period which usually acts as a dominant time-independent component of the Sea Surface Topography. The results are expected to be used to study the characteristics of the Indonesian seas for scientific and engineering purposes.

GEODYNAMICS ◽  
2011 ◽  
Vol 1(10)2011 (1(10)) ◽  
pp. 27-30
Author(s):  
N. Marchenko ◽  
◽  
N.P. Yarema ◽  
T.R. Pavliv ◽  
◽  
...  

The study of Black Sea and Mediterranean Sea surface altitudes was carried out based on satellite altimetry data. The model of the Black Sea and Mediterranean Sea surface topography (SST) was build. The comparison of received results with the European quasigeoid was done.


2017 ◽  
Vol 925 (7) ◽  
pp. 9-14
Author(s):  
Van Sang Nguyen ◽  
V.V. Popadyev

Mean Dynamic Topography (MDT) is the difference between mean sea surface height and geoid. Satellite altimetry data are known as sea surface height (ellipsoidal height), including geoid height, Mean Dynamic Topography and dynamic sea surface topography ht. To determine Mean Dynamic Topography from satellite altimetry data, the geoid height and dynamic sea surface topography should be removed from sea surface height. In this study, geoid height was computed from spherical harmonic coefficients of global Earth Gravity Model (EGM-2008). ht was determined using technique of tracks crossover adjustment. Finally, gridded model of Mean Dynamic Topography was established by using mean-squares prediction technique. By experimental processing and analysis, the gridded model of Mean Dynamic Topography had successfully built 5′ × 5′, named HUMG16MDT, for East Sea, using data of three altimetric satellites, namely TOPEX/POSEIDON, ENVISAT and JASON-2. For control purposes, this model was compared with the measurements on nine tidal stations, the computed estimation of standard deviation 15,5 cm.


2021 ◽  
Author(s):  
Milaa Murshan ◽  
Balaji Devaraju ◽  
Nagarajan Balasubramanian ◽  
Onkar Dikshit

<p>Satellite altimetry provides measurements of sea surface height of centimeter-level accuracy over open oceans. However, its accuracy reduces when approaching the coastal areas and over land regions. Despite this downside, altimetric measurements are still applied successfully in these areas through altimeter retracking processes. This study aims to calibrate and validate retracted sea level data of Envisat, ERS-2, Topex/Poseidon, Jason-1, 2, SARAL/AltiKa, Cryosat-2 altimetric missions near the Indian coastline. We assessed the reliability, quality, and performance of these missions by comparing eight tide gauge (TG) stations along the Indian coast. These are Okha, Mumbai, Karwar, and Cochin stations in the Arabian Sea, and Nagapattinam, Chennai, Visakhapatnam, and Paradip in the Bay of Bengal. To compare the satellite altimetry and TG sea level time series, both datasets are transformed to the same reference datum. Before the calculation of the bias between the altimetry and TG sea level time series, TG data are corrected for Inverted Barometer (IB) and Dynamic Atmospheric Correction (DAC). Since there are no prior VLM measurements in our study area, VLM is calculated from TG records using the same procedure as in the Technical Report NOS organization CO-OPS 065. </p><p>Keywords— Tide gauge, Sea level, North Indian ocean, satellite altimetry, Vertical land motion</p>


Ocean Science ◽  
2010 ◽  
Vol 6 (1) ◽  
pp. 311-329 ◽  
Author(s):  
R. A. Ibrayev ◽  
E. Özsoy ◽  
C. Schrum ◽  
H. İ. Sur

Abstract. A three-dimensional primitive equation model including sea ice thermodynamics and air-sea interaction is used to study seasonal circulation and water mass variability in the Caspian Sea under the influence of realistic mass, momentum and heat fluxes. River discharges, precipitation, radiation and wind stress are seasonally specified in the model, based on available data sets. The evaporation rate, sensible and latent heat fluxes at the sea surface are computed interactively through an atmospheric boundary layer sub-model, using the ECMWF-ERA15 re-analysis atmospheric data and model generated sea surface temperature. The model successfully simulates sea-level changes and baroclinic circulation/mixing features with forcing specified for a selected year. The results suggest that the seasonal cycle of wind stress is crucial in producing basin circulation. Seasonal cycle of sea surface currents presents three types: cyclonic gyres in December–January; Eckman south-, south-westward drift in February–July embedded by western and eastern southward coastal currents and transition type in August–November. Western and eastern northward sub-surface coastal currents being a result of coastal local dynamics at the same time play an important role in meridional redistribution of water masses. An important part of the work is the simulation of sea surface topography, yielding verifiable results in terms of sea level. The model successfully reproduces sea level variability for four coastal points, where the observed data are available. Analyses of heat and water budgets confirm climatologic estimates of heat and moisture fluxes at the sea surface. Experiments performed with variations in external forcing suggest a sensitive response of the circulation and the water budget to atmospheric and river forcing.


Sign in / Sign up

Export Citation Format

Share Document