scholarly journals Strong Menger Connectedness of Augmented k-ary n-cubes

Author(s):  
Mei-Mei Gu ◽  
Jou-Ming Chang ◽  
Rong-Xia Hao

Abstract A connected graph $G$ is called strongly Menger (edge) connected if for any two distinct vertices $x,y$ of $G$, there are $\min \{\textrm{deg}_G(x), \textrm{deg}_G(y)\}$ internally disjoint (edge disjoint) paths between $x$ and $y$. Motivated by parallel routing in networks with faults, Oh and Chen (resp., Qiao and Yang) proposed the (fault-tolerant) strong Menger (edge) connectivity as follows. A graph $G$ is called $m$-strongly Menger (edge) connected if $G-F$ remains strongly Menger (edge) connected for an arbitrary vertex set $F\subseteq V(G)$ (resp. edge set $F\subseteq E(G)$) with $|F|\leq m$. A graph $G$ is called $m$-conditional strongly Menger (edge) connected if $G-F$ remains strongly Menger (edge) connected for an arbitrary vertex set $F\subseteq V(G)$ (resp. edge set $F\subseteq E(G)$) with $|F|\leq m$ and $\delta (G-F)\geq 2$. In this paper, we consider strong Menger (edge) connectedness of the augmented $k$-ary $n$-cube $AQ_{n,k}$, which is a variant of $k$-ary $n$-cube $Q_n^k$. By exploring the topological proprieties of $AQ_{n,k}$, we show that $AQ_{n,3}$ (resp. $AQ_{n,k}$, $k\geq 4$) is $(4n-9)$-strongly (resp. $(4n-8)$-strongly) Menger connected for $n\geq 4$ (resp. $n\geq 2$) and $AQ_{n,k}$ is $(4n-4)$-strongly Menger edge connected for $n\geq 2$ and $k\geq 3$. Moreover, we obtain that $AQ_{n,k}$ is $(8n-10)$-conditional strongly Menger edge connected for $n\geq 2$ and $k\geq 3$. These results are all optimal in the sense of the maximum number of tolerated vertex (resp. edge) faults.

Author(s):  
Yihong Wang ◽  
Cheng-Kuan Lin ◽  
Shuming Zhou ◽  
Tao Tian

Large scale multiprocessor systems or multicomputer systems, taking interconnection networks as underlying topologies, have been widely used in the big data era. Fault tolerance is becoming an essential attribute in multiprocessor systems as the number of processors is getting larger. A connected graph [Formula: see text] is called strong Menger (edge) connected if, for any two distinct vertices [Formula: see text] and [Formula: see text], there are [Formula: see text] vertex (edge)-disjoint paths between them. Exchanged hypercube [Formula: see text], as a variant of hypercube [Formula: see text], remains lots of preferable fault tolerant properties of hypercube. In this paper, we show that [Formula: see text] [Formula: see text] and [Formula: see text] [Formula: see text] are strong Menger (edge) connected, respectively. Moreover, as a by-product, for dual cube [Formula: see text], one popular generalization of hypercube, [Formula: see text] is also showed to be strong Menger (edge) connected, where [Formula: see text].


Author(s):  
Pingshan Li ◽  
Rong Liu ◽  
Xianglin Liu

The Cayley graph generated by a transposition tree [Formula: see text] is a class of Cayley graphs that contains the star graph and the bubble sort graph. A graph [Formula: see text] is called strongly Menger (SM for short) (edge) connected if each pair of vertices [Formula: see text] are connected by [Formula: see text] (edge)-disjoint paths, where [Formula: see text] are the degree of [Formula: see text] and [Formula: see text] respectively. In this paper, the maximally edge-fault-tolerant and the maximally vertex-fault-tolerant of [Formula: see text] with respect to the SM-property are found and thus generalize or improve the results in [19, 20, 22, 26] on this topic.


Algorithmica ◽  
2021 ◽  
Author(s):  
Robert Ganian ◽  
Sebastian Ordyniak ◽  
M. S. Ramanujan

AbstractIn this paper we revisit the classical edge disjoint paths (EDP) problem, where one is given an undirected graph G and a set of terminal pairs P and asks whether G contains a set of pairwise edge-disjoint paths connecting every terminal pair in P. Our focus lies on structural parameterizations for the problem that allow for efficient (polynomial-time or FPT) algorithms. As our first result, we answer an open question stated in Fleszar et al. (Proceedings of the ESA, 2016), by showing that the problem can be solved in polynomial time if the input graph has a feedback vertex set of size one. We also show that EDP parameterized by the treewidth and the maximum degree of the input graph is fixed-parameter tractable. Having developed two novel algorithms for EDP using structural restrictions on the input graph, we then turn our attention towards the augmented graph, i.e., the graph obtained from the input graph after adding one edge between every terminal pair. In constrast to the input graph, where EDP is known to remain -hard even for treewidth two, a result by Zhou et al. (Algorithmica 26(1):3--30, 2000) shows that EDP can be solved in non-uniform polynomial time if the augmented graph has constant treewidth; we note that the possible improvement of this result to an FPT-algorithm has remained open since then. We show that this is highly unlikely by establishing the [1]-hardness of the problem parameterized by the treewidth (and even feedback vertex set) of the augmented graph. Finally, we develop an FPT-algorithm for EDP by exploiting a novel structural parameter of the augmented graph.


2019 ◽  
Vol 11 (06) ◽  
pp. 1950068
Author(s):  
Nopparat Pleanmani

A graph pebbling is a network optimization model for the transmission of consumable resources. A pebbling move on a connected graph [Formula: see text] is the process of removing two pebbles from a vertex and placing one of them on an adjacent vertex after configuration of a fixed number of pebbles on the vertex set of [Formula: see text]. The pebbling number of [Formula: see text], denoted by [Formula: see text], is defined to be the least number of pebbles to guarantee that for any configuration of pebbles on [Formula: see text] and arbitrary vertex [Formula: see text], there is a sequence of pebbling movement that places at least one pebble on [Formula: see text]. For connected graphs [Formula: see text] and [Formula: see text], Graham’s conjecture asserted that [Formula: see text]. In this paper, we show that such conjecture holds when [Formula: see text] is a complete bipartite graph with sufficiently large order in terms of [Formula: see text] and the order of [Formula: see text].


2006 ◽  
Vol 07 (03) ◽  
pp. 391-415 ◽  
Author(s):  
FRÉDÉRIC HAVET

An (n, p, f)-network G is a graph (V, E) where the vertex set V is partitioned into four subsets [Formula: see text] and [Formula: see text] called respectively the priorities, the ordinary inputs, the outputs and the switches, satisfying the following constraints: there are p priorities, n - p ordinary inputs and n + f outputs; each priority, each ordinary input and each output is connected to exactly one switch; switches have degree at most 4. An (n, p, f)-network is an (n, p, f)-repartitor if for any disjoint subsets [Formula: see text] and [Formula: see text] of [Formula: see text] with [Formula: see text] and [Formula: see text], there exist in G, n edge-disjoint paths, p of them from [Formula: see text] to [Formula: see text] and the n - p others joining [Formula: see text] to [Formula: see text]. The problem is to determine the minimum number R(n, p, f) of switches of an (n, p, f)-repartitor and to construct a repartitor with the smallest number of switches. In this paper, we show how to build general repartitors from (n, 0, f)-repartitors also called (n, n + f)-selectors. We then consrtuct selectors using more powerful networks called superselectors. An (n, 0, 0)-network is an n-superselector if for any subsets [Formula: see text] and [Formula: see text] with [Formula: see text], there exist in G, [Formula: see text] edge-disjoint paths joining [Formula: see text] to [Formula: see text]. We show that the minimum number of switches of an n-superselector S+ (n) is at most 17n + O(log(n)). We then deduce that [Formula: see text] if [Formula: see text], R(n, p, f) ≤ 18n + 34f + O( log (n + f)), if [Formula: see text] and [Formula: see text] if [Formula: see text]. Finally, we give lower bounds for R(n, 0, f) and S+ (n) and show optimal networks for small value of n.


Mathematics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 124
Author(s):  
Laxman Saha ◽  
Rupen Lama ◽  
Kalishankar Tiwary ◽  
Kinkar Chandra Das ◽  
Yilun Shang

Let G be a connected graph with vertex set V(G) and d(u,v) be the distance between the vertices u and v. A set of vertices S={s1,s2,…,sk}⊂V(G) is called a resolving set for G if, for any two distinct vertices u,v∈V(G), there is a vertex si∈S such that d(u,si)≠d(v,si). A resolving set S for G is fault-tolerant if S\{x} is also a resolving set, for each x in S, and the fault-tolerant metric dimension of G, denoted by β′(G), is the minimum cardinality of such a set. The paper of Basak et al. on fault-tolerant metric dimension of circulant graphs Cn(1,2,3) has determined the exact value of β′(Cn(1,2,3)). In this article, we extend the results of Basak et al. to the graph Cn(1,2,3,4) and obtain the exact value of β′(Cn(1,2,3,4)) for all n≥22.


2019 ◽  
Vol 11 (1) ◽  
pp. 24-40
Author(s):  
Jomon K. Sebastian ◽  
Joseph Varghese Kureethara ◽  
Sudev Naduvath ◽  
Charles Dominic

Abstract A path decomposition of a graph is a collection of its edge disjoint paths whose union is G. The pendant number Πp is the minimum number of end vertices of paths in a path decomposition of G. In this paper, we determine the pendant number of corona products and rooted products of paths and cycles and obtain some bounds for the pendant number for some specific derived graphs. Further, for any natural number n, the existence of a connected graph with pendant number n has also been established.


2019 ◽  
Vol 29 (03) ◽  
pp. 1950012
Author(s):  
Tianlong Ma ◽  
Jinling Wang ◽  
Mingzu Zhang

The restricted edge-connectivity of a connected graph [Formula: see text], denoted by [Formula: see text], if exists, is the minimum number of edges whose deletion disconnects the graph such that each connected component has at least two vertices. The Kronecker product of graphs [Formula: see text] and [Formula: see text], denoted by [Formula: see text], is the graph with vertex set [Formula: see text], where two vertices [Formula: see text] and [Formula: see text] are adjacent in [Formula: see text] if and only if [Formula: see text] and [Formula: see text]. In this paper, it is proved that [Formula: see text] for any graph [Formula: see text] and a complete graph [Formula: see text] with [Formula: see text] vertices, where [Formula: see text] is minimum edge-degree of [Formula: see text], and a sufficient condition such that [Formula: see text] is [Formula: see text]-optimal is acquired.


2021 ◽  
pp. 2142002
Author(s):  
Miaomiao Zhuo ◽  
Qinqin Li ◽  
Baoyindureng Wu ◽  
Xinhui An

In this paper, we consider the concept of the average edge-connectivity [Formula: see text] of a graph [Formula: see text], defined to be the average, over all pairs of vertices, of the maximum number of edge-disjoint paths connecting these vertices. Kim and O previously proved that [Formula: see text] for any connected cubic graph on [Formula: see text] vertices. We refine their result by showing that [Formula: see text] We also characterize the graphs where equality holds.


Author(s):  
Rong Liu ◽  
Pingshan Li

A graph [Formula: see text] is called strongly Menger edge connected (SM-[Formula: see text] for short) if the number of disjoint paths between any two of its vertices equals the minimum degree of these two vertices. In this paper, we focus on the maximally edge-fault-tolerant of the class of BC-networks (contain hypercubes, twisted cubes, Möbius cubes, crossed cubes, etc.) concerning the SM-[Formula: see text] property. Under the restricted condition that each vertex is incident with at least three fault-free edges, we show that even if there are [Formula: see text] faulty edges, all BC-networks still have SM-[Formula: see text] property and the bound [Formula: see text] is sharp.


Sign in / Sign up

Export Citation Format

Share Document