Realization of magnetic field reversible quantum Hall arrays

CPEM 2010 ◽  
2010 ◽  
Author(s):  
J. Konemann ◽  
J. Könemann ◽  
F. J. Ahlers ◽  
E. Pesel ◽  
K. Pierz ◽  
...  
Keyword(s):  
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Matheus I. N. Rosa ◽  
Massimo Ruzzene ◽  
Emil Prodan

AbstractTwisted bilayered systems such as bilayered graphene exhibit remarkable properties such as superconductivity at magic angles and topological insulating phases. For generic twist angles, the bilayers are truly quasiperiodic, a fact that is often overlooked and that has consequences which are largely unexplored. Herein, we uncover that twisted n-layers host intrinsic higher dimensional topological phases, and that those characterized by second Chern numbers can be found in twisted bi-layers. We employ phononic lattices with interactions modulated by a second twisted lattice and reveal Hofstadter-like spectral butterflies in terms of the twist angle, which acts as a pseudo magnetic field. The phason provided by the sliding of the layers lives on 2n-tori and can be used to access and manipulate the edge states. Our work demonstrates how multi-layered systems are virtual laboratories for studying the physics of higher dimensional quantum Hall effect, and can be employed to engineer topological pumps via simple twisting and sliding.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Kyung-Su Kim ◽  
Steven A. Kivelson

AbstractIt is widely held that disorder is essential to the existence of a finite interval of magnetic field in which the Hall conductance is quantized, i.e., for the existence of “plateaus” in the quantum Hall effect. Here, we show that the existence of a quasi-particle Wigner crystal (QPWC) results in the persistence of plateaus of finite extent even in the limit of vanishing disorder. Several experimentally detectable features that characterize the behavior in the zero disorder limit are also explored.


2007 ◽  
Vol 06 (03n04) ◽  
pp. 173-177
Author(s):  
YU. G. ARAPOV ◽  
S. V. GUDINA ◽  
G. I. HARUS ◽  
V. N. NEVEROV ◽  
N. G. SHELUSHININA ◽  
...  

The resistivity (ρ) of low mobility dilute 2D electron gas in an n- InGaAs / GaAs double quantum well (DQW) exhibits the monotonic "insulating-like" temperature dependence (dρ/dT < 0) at T = 1.8–70 K in zero magnetic field. This temperature interval corresponds to a ballistic regime (kBTτ/ħ > 0.1–3.5) for our samples, and the electron density is on an "insulating" side of the so-called B = 0 2D metal–insulator transition. We show that the observed features of localization and Landau quantization in a vicinity of the low magnetic-field-induced insulator–quantum Hall liquid transition is due to the σxy(T) anomalous T-dependence.


2011 ◽  
Vol 106 (23) ◽  
Author(s):  
Titus Neupert ◽  
Luiz Santos ◽  
Claudio Chamon ◽  
Christopher Mudry

2012 ◽  
Vol 97 (1) ◽  
pp. 17010 ◽  
Author(s):  
L. Fernandes dos Santos ◽  
Yu. A. Pusep ◽  
G. M. Gusev ◽  
A. K. Bakarov ◽  
A. I. Toropov

2007 ◽  
Vol 21 (08n09) ◽  
pp. 1445-1449
Author(s):  
K. TAKEHANA ◽  
Y. IMANAKA ◽  
T. TAKAMASU ◽  
M. HENINI

We have investigated transport properties in high magnetic field of a gated two-dimensional electron system (2DES) separated by a thin barrier from a layer of self-assembled InAs quantum dots (QDs) in the quantum Hall regime. The quality of 2DES was found to be high enough to observe both integer and fractional quantum Hall effect (QHE), despite the proximity of the QD layer to the 2DES. However, significant suppression of the magnetoresistance (ρ xx ) and Hall resistance (ρ xy ) were observed in higher magnetic field range of filling factor ν < 1 when a positive voltage was applied to the front gate. The gate voltage dependence of ρ xx and ρ xy shows a well-defined hysteresis loop at the narrow gate voltage range between -0.2 and +0.2 V at ν < 1, while no anomaly was observed at ν > 1. We deduce that charging and discharging of QDs occurs when the gate voltage is varied around Vg ~ 0 V, which indicates that the electron charge states of the QDs affect the transport properties of the nearby 2DES only at ν < 1. We infer that the spin-flip process induces a non-equilibrium state in the 2DEG, which causes the suppression of ρ xx and ρ xy .


2012 ◽  
Vol 400 (4) ◽  
pp. 042005 ◽  
Author(s):  
I L Drichko ◽  
I Yu Smirnov ◽  
A V Suslov ◽  
O A Mironov ◽  
D R Leadley

Sign in / Sign up

Export Citation Format

Share Document