Real-Time Parallel Computing Design for Implementation of Point/Small Target Detection Algorithm in Visible/Infra-Red Video

Author(s):  
Ram Saran ◽  
Avnish Kumar ◽  
Hari Babu Srivastava
2015 ◽  
Author(s):  
Ying Zhao ◽  
Gang Liu ◽  
Huixin Zhou ◽  
Hanlin Qin ◽  
Xiao Li ◽  
...  

2019 ◽  
Vol 11 (4) ◽  
pp. 382 ◽  
Author(s):  
Landan Zhang ◽  
Zhenming Peng

Excellent performance, real time and strong robustness are three vital requirements for infrared small target detection. Unfortunately, many current state-of-the-art methods merely achieve one of the expectations when coping with highly complex scenes. In fact, a common problem is that real-time processing and great detection ability are difficult to coordinate. Therefore, to address this issue, a robust infrared patch-tensor model for detecting an infrared small target is proposed in this paper. On the basis of infrared patch-tensor (IPT) model, a novel nonconvex low-rank constraint named partial sum of tensor nuclear norm (PSTNN) joint weighted l1 norm was employed to efficiently suppress the background and preserve the target. Due to the deficiency of RIPT which would over-shrink the target with the possibility of disappearing, an improved local prior map simultaneously encoded with target-related and background-related information was introduced into the model. With the help of a reweighted scheme for enhancing the sparsity and high-efficiency version of tensor singular value decomposition (t-SVD), the total algorithm complexity and computation time can be reduced dramatically. Then, the decomposition of the target and background is transformed into a tensor robust principle component analysis problem (TRPCA), which can be efficiently solved by alternating direction method of multipliers (ADMM). A series of experiments substantiate the superiority of the proposed method beyond state-of-the-art baselines.


Author(s):  
ZHEN-XUE CHEN ◽  
CHENG-YUN LIU ◽  
FA-LIANG CHANG

It is an important and challenging problem to detect small targets in clutter scene and low SNR (Signal Noise Ratio) in infrared (IR) images. In order to solve this problem, a method based on feature salience is proposed for automatic detection of targets in complex background. Firstly, in this paper, the method utilizes the average absolute difference maximum (AADM) as the dissimilarity measurement between targets and background region to enhance targets. Secondly, minimum probability of error was used to build the model of feature salience. Finally, by computing the realistic degree of features, this method solves the problem of multi-feather fusion. Experimental results show that the algorithm proposed shows better performance with respect to the probability of detection. It is an effective and valuable small target detection algorithm under a complex background.


Sign in / Sign up

Export Citation Format

Share Document