Estimation of Luminous Flux and Luminous Efficacy of Low-Power SMD LED as a Function of Injection Current and Ambient Temperature

2016 ◽  
Vol 63 (7) ◽  
pp. 2790-2795 ◽  
Author(s):  
Muna E. Raypah ◽  
Bashiru K. Sodipo ◽  
Mutharasu Devarajan ◽  
Fauziah Sulaiman
2016 ◽  
Vol 63 (1) ◽  
pp. 408-413 ◽  
Author(s):  
Muna E. Raypah ◽  
Bashiru K. Sodipo ◽  
Mutharasu Devarajan ◽  
Fauziah Sulaiman

2020 ◽  
pp. 57-62
Author(s):  
Olga Yu. Kovalenko ◽  
Yulia A. Zhuravlyova

This work contains analysis of characteristics of automobile lamps by Philips, KOITO, ETI flip chip LEDs, Osram, General Electric (GE), Gtinthebox, OSLAMPledbulbs with H1, H4, H7, H11 caps: luminous flux, luminous efficacy, correlated colour temperature. Characteristics of the studied samples are analysed before the operation of the lamps. The analysis of the calculation results allows us to make a conclusion that the values of correlated colour temperature of halogen lamps are close to the parameters declared by manufacturers. The analysis of the study results has shown that, based on actual values of correlated colour temperature, it is not advisable to use LED lamps in unfavourable weather conditions (such as rain, fog, snow). The results of the study demonstrate that there is a slight dispersion of actual values of luminous flux of halogen lamps by different manufacturers. Maximum variation between values of luminous flux of different lamps does not exceed 14 %. The analysis of the measurement results has shown that actual values of luminous flux of all halogen lamps comply with the mandatory rules specified in the UN/ECE Regulation No. 37 and luminous flux of LED lamps exceeds maximum allowable value by more than 8 %. Luminous efficacy of LED lamps is higher than that of halogen lamps: more than 82 lm/W and lower power consumption. The results of the measurements have shown that power consumption of a LED automobile lamp is lower than that of similar halogen lamps by 3 times and their luminous efficacy is higher by 5 times.


2018 ◽  
Vol 35 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Muna E. Raypah ◽  
Dheepan M.K. ◽  
Mutharasu Devarajan ◽  
Shanmugan Subramani ◽  
Fauziah Sulaiman

Purpose Thermal behavior of light-emitting diode (LED) device under different operating conditions must be known to enhance its reliability and efficiency in various applications. The purpose of this study is to report the influence of input current and ambient temperature on thermal resistance of InGaAlP low-power surface-mount device (SMD) LED. Design/methodology/approach Thermal parameters of the LED were measured using thermal transient measurement via Thermal Transient Tester (T3Ster). The experimental results were validated using computational fluid dynamics (CFD) software. Findings As input current increases from 50 to 90 mA at 25°C, the relative increase in LED package (ΔRthJS) and total thermal resistance (ΔRthJA) is about 10 and 4 per cent, respectively. In addition, at 50 mA and ambient temperature from 25 to 65°C, the ΔRthJS and ΔRthJA are roughly 28 and 22 per cent, respectively. A good agreement between simulation and experiment results of junction temperature. Originality/value Most of previous studies have focused on thermal management of high-power LEDs. There were no studies on thermal analysis of low-power SMD LED so far. This work will help in predicting the thermal performance of low-power LEDs in solid-state lighting applications.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Muna Ezzi Raypah ◽  
Shahrom Mahmud ◽  
Mutharasu Devarajan ◽  
Anoud AlShammari

Purpose Optimization of light-emitting diodes’ (LEDs’) design together with long-term reliability is directly correlated with their photometric, electric and thermal characteristics. For a given thermal layout of the LED system, the maximum luminous flux occurs at an optimal electrical input power and can be determined using a photo-electro-thermal (PET) theory. The purpose of this study is to extend the application of the luminous flux equation in PET theory for low-power (LP) LEDs. Design/methodology/approach LP surface-mounted device LEDs were mounted on substrates of different thermal resistances. Three LEDs were attached to substrates which were flame-retardant fiberglass epoxy (FR4) and two aluminum-based metal core printed circuit boards (MCPCBs) with thermal conductivities of about 1.0 W/m.K, 2.0 W/m.K and 5.0 W/m.K, respectively. The conjunction of thermal transient tester and thermal and radiometric characterization of LEDs system was used to measure the thermal and optical parameters of the LEDs at a certain range of input current and temperature. Findings The validation of the extended application of the luminous flux equation was confirmed via a good agreement between the practical and theoretical results. The outcomes show that the optimum luminous flux is 25.51, 31.91 and 37.01 lm for the LEDs on the FR4 and the two MCPCBs, respectively. Accordingly, the stipulated maximum electrical input power in the LED datasheet (0.185 W) is shifted to 0.6284, 0.6963 and 0.8838 W between the three substrates. Originality/value Using a large number of LP LEDs is preferred than high-power (HP) LEDs for the same system power to augment the heat transfer and provide a higher luminous flux. The PET theory equations have been applied to HP LEDs using heatsinks with various thermal resistances. In this work, the PET theory luminous flux equation was extended to be used for Indium Gallium Aluminum Phosphide LP LEDs attached to the substrates with dissimilar thermal resistances.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Muna E. Raypah ◽  
Mutharasu Devarajan ◽  
Shahrom Mahmud

Purpose One major problem in the lighting industry is the thermal management of the devices. Handling of thermal resistance from solder point to the ambiance of the light-emitting diode (LED) package is linked to the external thermal management that includes a selection of the cooling mode, design of heatsink/substrate and thermal interface material (TIM). Among the significant factors that increase the light output of the of the LED system are efficient substrate and TIM. In this work, the influence of TIM on the luminous flux performance of commercial indium gallium aluminium phosphide (InGaAlP) low-power (LP) LEDs was investigated. Design/methodology/approach One batch of LEDs was mounted directly onto substrates which were glass-reinforced epoxy (FR4) and aluminium-based metal-core printed circuit boards (MCPCBs) with a dielectric layer of different thermal conductivities. Another batch of LEDs was prepared in a similar way, but a layer of TIM was embedded between the LED package and substrate. The TIMs were thermally conductive epoxy (TCE) and thermally conductive adhesive (TCA). The LED parameters were measured by using the integrated system of thermal transient tester (T3Ster) and thermal-radiometric characterization of LEDs at various input currents. Findings With the employment of TIM, the authors found that the LED’s maximum luminous flux was significantly higher than the value mentioned in the LED datasheet, and that a significant reduction in thermal resistance and junction temperature was revealed. The results showed that for a system with low thermal resistance, the maximum luminous flux appeared to occur at a higher power level. It was found that the maximum luminous flux was 24.10, 28.40 and 36.00 lm for the LEDs mounted on the FR4 and two MCPCBs, respectively. After TCA application on the LEDs, the maximum luminous flux values were 32.70, 36.60 and 37.60 lm for the FR4 and MCPCBs, respectively. Moreover, the findings demonstrated that the performance of the LED mounted on the FR4 substrate was more affected by the employment of the TIM than that of MCPCBs. Research limitations/implications One of the major problems in the lighting industry is the thermal management of the device. In many low-power LED applications, the air gap between the two solder pads is not filled up. Heat flow is restricted by the air gap leading to thermal build-up and higher thermal resistance resulting in lower maximum luminous flux. Among the significant factors that increase the light output of the LED system are efficient substrate and TIM. Practical implications The findings in this work can be used as a method to improve thermal management of LP LEDs by applying thermal interface materials that can offer more efficient and brighter LP LEDs. Using aluminium-based substrates can also offer similar benefits. Social implications Users of LP LEDs can benefit from the findings in this work. Brighter automotive lighting (signalling and backlighting) can be achieved, and better automotive lighting can offer better safety for the people on the street, especially during raining and foggy weather. User can also use a lower LED power rating to achieve similar brightness level with LED with higher power rating. Originality/value Better thermal management of commercial LP LEDs was achieved with the employment of thermal interface materials resulting in lower thermal resistance, lower junction temperature and brighter LEDs.


Solar Energy ◽  
2002 ◽  
Vol 73 (5) ◽  
pp. 319-326 ◽  
Author(s):  
V. Lampret ◽  
J. Peternelj ◽  
A. Krainer

Author(s):  
Nguyen Thi Phuong Loan ◽  
Nguyen Doan Quoc Anh

As the luminescence industry develops, the white light light-emitting diode (LED) package with a single chip and a single phosphor although produces good luminous flux but has a poor color rendering index (CRI) can no longer fulfill the requirements of modern lighting applications. Therefore, this research is conducted to response to the urgent demands of improving other lighting qualities of WLED while maintaining high luminous efficiency. To achieve this target, we applied the new WLED package, which contains multi-chips and multi-phosphor layers, and have obtained outstanding results in both CRI and luminous efficacy. Two types of phosphor used in the WLED package are Y2O3:Ho3+ and ZnO:Bi3+. A color configuration model is also developed to adjust the shading of the white-light LED module. The results of this research show that the triple-layer phosphorhas the best performance when applied in a white-light LED package, which is demonstrated through better color quality, CRI and luminous efficacy, The manufacturers can rely on this research to produce the optimal-quality WLED, or WLED that is appropriate to their quality demands.


2006 ◽  
Vol 21 (4) ◽  
pp. 507-512 ◽  
Author(s):  
Yimao Cai ◽  
Ru Huang ◽  
Xiaonan Shan ◽  
Yan Li ◽  
Falong Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document