The Reduction of Adhesion by Ion Implantation

1985 ◽  
Vol 107 (4) ◽  
pp. 467-471 ◽  
Author(s):  
M. Hirano ◽  
S. Miyake

The effects of boron and argon ion implantation on the tribological characteristics of SUS440C stainless steel, sliding against a SUS440C ball (unimplanted) were investigated at room temperature using a friction test apparatus employing a ball-plate geometry in the absence of a lubricant. Wear performance was estimated using a profilometer tracing of the specimen wear track. Boron implantation reduced both the friction and wear of SUS440C. The friction coefficient of SUS440C was reduced from 0.75 to 0.15. SEM observations of wear track topography suggest that the reduction of the friction coefficient can be attributed to reduced adhesion due to boron implantation. The friction coefficient of the boron implanted layer decreased with an increase in the total ion dose. Argon implantation was carried out to distinguish the effects of implantation from the influence of contamination. Argon implantation increased the friction coefficient from 0.8 to 1.0 in contrast with boron implantation.

2017 ◽  
Vol 24 (03) ◽  
pp. 1750028 ◽  
Author(s):  
ZHENXIA WANG ◽  
HAIRUI WU ◽  
NAIMING LIN ◽  
XIAOHONG YAO ◽  
ZHIYONG HE ◽  
...  

Plasma surface alloying (PSA) technique was employed with nickel as incident ions to prepare the TiNi/Ti2Ni alloyed layer on surface of Ti6Al4V. High-temperature friction and wear performance of TiNi/Ti2Ni alloyed layer and the Ti6Al4V substrate were evaluated at 500[Formula: see text]C. The results indicated that the TiNi/Ti2Ni alloyed layer exhibited superior high-temperature wear performance. The variations of friction coefficient were the same rule but wear rate was lower compared to Ti6Al4V substrate. The wear mechanism of TiNi/Ti2Ni alloyed layer was mainly slight abrasion and the Ti6Al4V substrate showed abrasion and oxidation wear. The friction coefficient of the TiNi/Ti2Ni alloyed layer decreased from 0.90 to 0.50 with the increase of temperature from room temperature to 500[Formula: see text]C.


2016 ◽  
Vol 868 ◽  
pp. 18-22
Author(s):  
Hai Xia Guo ◽  
Nan Qu ◽  
Jian Feng Yang ◽  
Jun-Ichi Matsushita ◽  
Seung Ho Kim ◽  
...  

Two types of CuFe matrix composites with different reinforcements: silica and alumina particulates were developed using powder metallurgy. The mechanical properties were determined from Brinell hardness and flexural strength. The dry sliding friction and wear performance of the composites were investigated by the friction test. The results indicated that mechanical properties of alumina were superior to those of silica. The friction tests of the composites showed that the alumina reinforcement particle provides better braking performance. A wear track examination of composites showed that same abrasive wear. Our results indicated that composites with alumina reinforcement particles of high compatibility are to be preferred for braking performance.


MRS Advances ◽  
2017 ◽  
Vol 2 (62) ◽  
pp. 3873-3881 ◽  
Author(s):  
M.T. Hernández-Sierra ◽  
R. Ortega-Álvarez ◽  
M.G. Bravo-Sánchez ◽  
L.D. Aguilera-Camacho ◽  
J.S. García-Miranda ◽  
...  

ABSTRACTAISI 4140 steel is a popular low alloy steel due to its wide applications as workpiece in the metal-mechanic industry; there are extensive research about surface modification to enhance its properties for specific applications. The focus of this study was to investigate the influence of the nature of lubricants, mineral and vegetable oils, on the tribological performance of the hardened and tempered AISI 4140 steel against alumina (Al2O3). For this purpose, friction tests were conducted in a pin on disc tribometer according to ASTM standard G 99-05, at room temperature of 25 °C and in air with about 30% relative humidity. Lubricants were selected to be commercial Holifa B22/2 oil as mineral oil and Castor Oil as bio-lubricant, with kinematic viscosity at 25 °C of 667 and 662 cSt respectively. The following conditions were settled for all the experiments: relative sliding speed of 0.05 ms-1, sliding distance of 1000 m and wear track radius of 2 mm. Friction behaviour was reported as the average kinetic friction coefficient (µK) while wear performance was evaluated as wear rate (K). In order to identify and determine wear mechanisms, worn surfaces were analyzed by optical microscopy and profilometry. It was found that, for these tribosystems, hardened and tempered AISI 4140 steel had the best friction and wear performance under lubrication with Castor Oil. The lowest µK achieved was 0.035, whereas the lowest K was 1.02x10-8 mm3/Nm. With this bio-lubricant, there were reductions in friction and wear up to 72% compared with those under mineral oil lubrication.


Author(s):  
Noritsugu Umehara ◽  
Kota Konishi ◽  
Motoyuki Murashima ◽  
Takayuki Tokoroyama

Abstract Tribological properties of a-C:H coatings has been investigated in various friction conditions. It is clear that temperature and mating materials give effects on tribological properties. In this study, we especially focus on the effect of mating material on its tribological properties of a-C:H coatings. Ball-on-disk friction test is conducted between a-C:H coating and 5 kinds of mating material, which is SiC, SiC(O)_800 (SiC oxidized at 800°C), SiC(O)_1050°C, SiC(O)_1300°C, and Quartz glass. It is found that a-C:H coatings shows low friction coefficient and low specific wear rate when O/Si ratio of the element content of mating material is 2, in other words, mating material is SiO2. In the wear scar of a-C:H coating after friction test with SiC, severe damage was confirmed. It is considered that a-C:H coating and SiO2 show low adhesion even at high temperature, which leads low friction and wear. Compared SiC(O) with Quartz, the friction coefficients with a-C:H coatings are respectively 0.013 and 0.038. Even though SiC(O) and Quartz are both SiO2, the tribological properties are different. On the wear track of SiC(O), transferred things from a-C:H coating are confirmed.


2021 ◽  
Author(s):  
Huimin FANG ◽  
Liansen XIA ◽  
Qingping YU ◽  
Guangsheng ZHANG

Iron-based specimens with boronized layers were prepared by boriding at 800 ℃, 900 ℃ and 1000 ℃ for 3, 5, and 7 hours, respectively. The thickness, microstructure, surface roughness, friction, and wear performance were studied. Results showed that the process parameters such as temperature, the time of boriding have remarkable impact on the thickness of the boronized layer. Dual-phase was generated at 1000 ℃ which lead to increased brittleness, lower surface hardness, and decreased adhesion to the substrate. Compared with specimens boronized at 1000 ℃ and 800 ℃, the surface structure of the boronized layer of specimens boronized at 900 ℃ is denser and uniform, the wear track is not damaged. The average friction coefficient and mass loss by wear of specimens boronized at 900 °C are smaller than that of boronized at 1000 ℃ and 800 ℃, indicating that specimens borided at 900 ℃ behave excellent friction and wear performance.


2011 ◽  
Vol 291-294 ◽  
pp. 34-40
Author(s):  
Hua Tang ◽  
Wen Jing Li ◽  
Chang Sheng Li

The YBa2Cu3Ox/Ag and Bi2Sr2CaCu2Ox/Ag self-lubricating composites were prepared using powder metallurgic method. The crystal structure and morphology of the as-synthesized samples were characterized by XRD and SEM. The YBa2Cu3Ox/Ag and Bi2Sr2CaCu2Ox/Ag self-lubricating composites were found to compose of superconductor phase and Ag phase. The tribological properties from ultra-low temperature to room temperature of the composites were studied by pin-on-disk friction test. It was found that the friction coefficients of pure YBa2Cu3Ox(YBCO) and Bi2Sr2CaCu2Ox(BSCCO) were both dropped abruptly when the temperature cooled below the superconducting transition temperature. At room temperature, the friction coefficient of pure YBa2Cu3Oxis 0.68~0.95, when mixing 15wt% Ag, the friction coefficient of the sample decreased to the lowest value 0.11. The friction coefficient of pure Bi2Sr2CaCu2Ox is 0.15~0.17, When Ag content reach 10wt%, the coefficient was lowest (average value is 0.13). The addition of appropriate amount of Ag obviously improve the tribological property of YBCO, while only slightly meliorate that of BSCO. On the other hand, the YBCO/Ag composites exhibit better tribological properties than BSCCO/Ag composites at higher load under the same experimental condition.


1972 ◽  
Vol 94 (1) ◽  
pp. 12-18 ◽  
Author(s):  
M. T. Lavik ◽  
B. D. McConnell ◽  
G. David Moore

Results are presented for the bonding of thin, sintered, fluoride films of BaF2 and CaF2 with mono-aluminum phosphate. Friction and wear behavior of these films has been defined in terms of film compositional changes, film curing procedures, and substrate variations when subjected to varying levels of temperature and load. Mono-aluminum phosphate was found to greatly enhance the adhesion of the sintered fluoride film. There was a strong dependence of wear life at 1000 deg F on the mono-aluminum phosphate content of the film. Films containing 6 vol. percent phosphate appear to be near optimum and exhibited wear lives of 1,000,000 load cycles under sliding conditions in a dual rub-shoe device with friction coefficient levels in the order of 0.10 to 0.20. Near-optimum values were determined for cure temperature (950 deg C), and surface finish (23 μ in. rms) on rhodium-plated substrates. Graphite and gold were added to the aluminum phosphate bonded BaF2: CaF2 films. Both additives were found to lower the friction coefficient at room temperature.


2011 ◽  
Vol 301-303 ◽  
pp. 494-496
Author(s):  
Ye Tian ◽  
Mei Jia Guo ◽  
Jian She Zhang ◽  
Yu Cheng Li ◽  
Dong Xing Zhang ◽  
...  

Friction and wear performance is very complex. There are many tests methods and tests apparatus. In this paper, some basic of friction contact types and relative motion modes were introduced. Then some important friction tests methods and apparatus for composites were reviewed concisely. At last, a new friction method and equipment used in Kevlar/epoxy composite were proposed.


2010 ◽  
Vol 431-432 ◽  
pp. 385-388 ◽  
Author(s):  
Jian Hua Zhang ◽  
Pei Qi Ge ◽  
Lei Zhang ◽  
Yang Yu ◽  
Hui Li

The grind-hardening technology utilizes the grinding heat to harden the surface of the workpiece. The friction and wear performance of the grind-hardened layer is one of the important parameters. In this paper, the friction and wear performance of the grind-hardened layer was studied by the friction and wear experiment. The wear rate and the friction coefficient of the grind-hardened steel were studied by comparing with conventional hardened steel and non-hardened steel. The surface worn morphology and the collected wear debris of the grind-hardened steel were observed during the experiment. The wear mechanism of the grind-hardened steel was analyzed under different friction conditions.


1988 ◽  
Vol 128 ◽  
Author(s):  
Jun Sasaki ◽  
Masaya Iwaki

ABSTRACTA study has been made on friction and hardness of boron and nitrogen ion implanted Fe-Cr alloys. Ion implantation has been carried out with doses ranging from 5 wt% up to 20 wt% at energies of 50, 100 and 150 keY at room temperature. Reciprocal traces for friction coefficient measurements were performed by using a Bowden-Leben tester at a low speed without lubricant. Hardness was measured by using a micro-Vickers tester at a load of 2gf. Hardness of the specimen increases after the implantation with either of ion species. Friction measurements with reciprocal sliding show that a life-time of decreased friction coefficient depends on implanted ion species, Cr concentrations and acceleration energies. For B+- implantation, the lower the chromium contents are, the longer a decreased friction coefficient lasts. Meanwhile, the friction reduced by nitrogen implantation lasts longer for higher chromium content substrates. Dependence of friction coefficient on an acceleration energy is discussed for B+-implantation.


Sign in / Sign up

Export Citation Format

Share Document