scholarly journals CFRP Reinforcement and Repair of Steel Pipe Elbows Subjected to Severe Cyclic Loading

2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Ioannis Skarakis ◽  
Giannoula Chatzopoulou ◽  
Spyros A. Karamanos ◽  
Nicholas G. Tsouvalis ◽  
Aglaia E. Pournara

In order to ensure safe operation and structural integrity of pipelines and piping systems subjected to extreme loading conditions, it is often necessary to strengthen critical pipe components. One method to strengthen pipe components is the use of composite materials. The present study is aimed at investigating the mechanical response of pipe elbows, wrapped with carbon fiber-reinforced plastic (CFRP) material, and subjected to severe cyclic loading that leads to low-cycle fatigue (LCF). In the first part of the paper, a set of LCF experiments on reinforced and nonreinforced pipe bend specimens are described focusing on the effects of CFRP reinforcement on the number of cycles to failure. The experimental work is supported by finite element analysis presented in the second part of the paper, in an attempt to elucidate the failure mechanism. For describing the material nonlinearities of the steel pipe, an efficient cyclic-plasticity material model is employed, capable of describing both the initial yield plateau of the stress–strain curve and the Bauschinger effect characterizing reverse plastic loading conditions. The results from the numerical models are compared with the experimental data, showing an overall good comparison. Furthermore, a parametric numerical analysis is conducted to examine the effect of internal pressure on the structural behavior of nonreinforced and reinforced elbows, subjected to severe cyclic loading.

Author(s):  
Giannoula Chatzopoulou ◽  
Ioannis Skarakis ◽  
Spyros A. Karamanos ◽  
Nicholas G. Tsouvalis ◽  
Aglaia E. Pournara

Strengthening of pipelines and piping systems under extreme loading conditions increases their operation safety level towards safeguarding their structural integrity. Motivated by the structural integrity of pipelines and piping systems, the present study aims at investigating the effect of Carbon Fiber Reinforced Plastic (CFRP) wrapping on the mechanical response of cyclically-loaded steel pipe elbows. Based on experimental testing results, a finite element model is developed, which simulates reinforced and non-reinforced pipe elbows specimens subjected to low-cyclic fatigue. For the description of the material nonlinearities, an efficient cyclic-plasticity material model is also employed, capable of describing both the yield plateau region of the steel stress-strain curve and the Bauschinger effect that appears under reverse plastic loading conditions. The results from the numerical models are compared successfully with the experimental data. Furthermore, a parametric analysis is conducted in order to examine the effect of internal pressure on the structural behavior of unreinforced and reinforced elbows, subjected to cyclic loading.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Konstantinos Chatziioannou ◽  
Yuner Huang ◽  
Spyros A. Karamanos

Abstract This work investigates the response of industrial steel pipe elbows subjected to severe cyclic loading (e.g., seismic or shutdown/startup conditions), associated with the development of significant inelastic strain amplitudes of alternate sign, which may lead to low-cycle fatigue. To model this response, three cyclic-plasticity hardening models are employed for the numerical analysis of large-scale experiments on elbows reported elsewhere. The constitutive relations of the material model follow the context of von Mises cyclic elasto-plasticity, and the hardening models are implemented in a user subroutine, developed by the authors, which employs a robust numerical integration scheme, and is inserted in a general-purpose finite element software. The three hardening models are evaluated in terms of their ability to predict the strain range at critical locations, and in particular, strain accumulation over the load cycles, a phenomenon called “ratcheting.” The overall good comparison between numerical and experimental results demonstrates that the proposed numerical methodology can be used for simulating accurately the mechanical response of pipe elbows under severe inelastic repeated loading. Finally, this paper highlights some limitations of conventional hardening rules in simulating multi-axial material ratcheting.


Author(s):  
George E. Varelis ◽  
Jan Ferino ◽  
Spyros A. Karamanos ◽  
Antonio Lucci ◽  
Giuseppe Demofonti

The present work examines the behavior of pipe elbows subjected to strong cyclic in-plane bending loading in the presence of internal pressure. In the first part of this work the experimental procedure is presented in detail. The tests are conducted in a constant amplitude displacement-controlled mode resulting to failures in the low-cycle fatigue range. The overall behavior of each tested specimen, as well as the evolution and concentration of local strains are monitored throughout the testing procedure. Different internal pressure levels are used in order to examine their effect on the fatigue life of the specimens. The above experimental investigation is supported by rigorous finite element analysis. Using detailed dimensional measurements and material testing obtained prior to specimen testing, detailed numerical models are developed to simulate the conducted experiments. An advanced cyclic plasticity material model is employed for the simulation of the tests. Emphasis is given on the local strain development at the critical part of the elbow where cracking occurs. Finally, the results of the present investigation are compared with available design provisions in terms of both ultimate capacity and low-cycle fatigue.


2006 ◽  
Vol 20 (25n27) ◽  
pp. 4069-4074 ◽  
Author(s):  
KYONG-HO CHANG ◽  
GAB-CHUL JANG ◽  
SANG-HYONG LEE

The weld metals used in welding process influences on behavior of steel structures under monotonic and cyclic loading. Because weld metals have different characteristics than structional steels for stress-strain relationship and mechanical properties. Therefore, to predict behavior of steel structure manufactured by welding process, a hysteretic model for weld metal is necessary. In this paper, to formulate the hysteretic model for E71T-1 weld metal, tensile tests and low cycle fatigue tests were carried out. A formulated hysteretic model applied to 3-dimensional elastic-plastic finite element analysis was proposed by the authors. To investigate the effect of weld metal on behavior of steel pipe members, numerical analyses of steel pipe with a welded joint were carried out under monotonic and cyclic loading. The effect of weld metal was clarified by comparing analytical results both steel pipe with consideration of weld metal and without consideration of weld metal.


2014 ◽  
Vol 137 (1) ◽  
Author(s):  
George E. Varelis ◽  
Spyros A. Karamanos

The present study examines the mechanical behavior of steel process piping elbows, subjected to strong cyclic loading conditions. The work is numerical, supported by experimental data on elbow specimens subjected to in-plane cyclic bending, with or without internal pressure, resulting in failure in the low-cycle-fatigue range. The investigation of elbow behavior is conducted using rigorous finite element analysis accounting for measured elbow geometry and the actual material properties. An advanced cyclic plasticity material model is employed for the simulation of the tests. Emphasis is given on the value of local strain and its accumulation at the critical elbow location where cracking occurs. Based on the cyclic stress–strain curve of the material and the strain-based fatigue curve from the test data, the use of Neuber's formula leads to a fatigue analysis and design methodology, offering a simple and efficient tool for predicting elbow fatigue life.


2021 ◽  
Author(s):  
Antonio Pol ◽  
Fabio Gabrieli ◽  
Lorenzo Brezzi

AbstractIn this work, the mechanical response of a steel wire mesh panel against a punching load is studied starting from laboratory test conditions and extending the results to field applications. Wire meshes anchored with bolts and steel plates are extensively used in rockfall protection and slope stabilization. Their performances are evaluated through laboratory tests, but the mechanical constraints, the geometry and the loading conditions may strongly differ from the in situ conditions leading to incorrect estimations of the strength of the mesh. In this work, the discrete element method is used to simulate a wire mesh. After validation of the numerical mesh model against experimental data, the punching behaviour of an anchored mesh panel is investigated in order to obtain a more realistic characterization of the mesh mechanical response in field conditions. The dimension of the punching element, its position, the anchor plate size and the anchor spacing are varied, providing analytical relationships able to predict the panel response in different loading conditions. Furthermore, the mesh panel aspect ratio is analysed showing the existence of an optimal value. The results of this study can provide useful information to practitioners for designing secured drapery systems, as well as for the assessment of their safety conditions.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
George E. Varelis ◽  
Spyros A. Karamanos ◽  
Arnold M. Gresnigt

Motivated by the response of industrial piping under seismic loading conditions, the present study examines the behavior of steel process piping elbows, subjected to strong cyclic loading conditions. A set of experiments is conducted on elbow specimens subjected to constant amplitude in-plane cyclic bending, resulting into failure in the low-cycle-fatigue range. The experimental results are used to develop a low-cycle-fatigue curve within the strain-based fatigue design framework. The experimental work is supported by finite element analyses, which account for geometrical and material nonlinearities. Using advanced plasticity models to describe the behavior of elbow material, the analysis focuses on localized deformations at the critical positions where cracking occurs. Finally, the relevant provisions of design codes (ASME B31.3 and EN 13480) for elbow design are discussed and assessed, with respect to the experimental and numerical findings.


Author(s):  
Robert Lazor ◽  
Brock Bolton ◽  
Aaron Dinovitzer

Full encirclement repair sleeves with fillet-welded ends are often used as permanent repairs on pipelines to reinforce areas with defects, such as cracks or corrosion. In-service failures have occurred at reinforcing sleeves as a result of defects associated with the sleeve welds, such as hydrogen-induced cracks and undercut at the fillet welds, inadequate weld size, and sleeve longitudinal seam ruptures. This work was undertaken to support the development of tools for sleeve design and for conducting an engineering assessment to determine the tolerable dimensions of flaw indications at full encirclement repair sleeves. In particular, the project was intended to validate the stresses estimated using finite element analysis (FEA) models against actual in-service loading conditions experienced at reinforcing sleeves. The experimental work focused on the collection of full-scale experimental data describing pipe and sleeve strains for the following field and laboratory conditions: • Strains induced by sleeve welding, • Strains induced by pressurization of the sleeved pipe, • Strains induced by pressurization of the sleeved pipe and the annulus between the pipe and sleeve. Finite element models of the field and laboratory sleeved pipe segments were developed and subjected to the same applied loading conditions as the full-scale sleeved pipe segments. Comparisons of the measured strains against those estimated using FEA were completed to determine the ability of the models to predict the behaviour of the sleeved pipe segments. Comparisons were made to illustrate the relative strain levels and deformation trends, the accuracies of the strain predictions and trends in changes with pressure, the differences in behaviours between tight and loose fitting sleeves, and the effects of pressurizing the annulus between the pipe wall and sleeve. The analysis of the field data and FEA modeling predictions led to several conclusions regarding to use of numerical models for predicting sleeved pipe behaviour and weld flaw acceptance: • FEA results demonstrated behaviours that were consistent with full scale data, • Trends in the FEA predicted strains agreed with the full-scale data, • FEA models describing the effects of gaps between the pipe and sleeve and annulus pressurization agreed with field experience and engineering judgment, • Evaluation of the significance of root and toe flaws can be completed by extending the models validated in this work.


2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Jae-Sung Lee ◽  
Myung-Hyun Kim

Abstract Engineering critical assessment (ECA) is an evaluation procedure for structures with flaws and has been widely applied for assessing pipeline integrity. The standards for structural integrity assessment, including BS 7910, involve stress-based ECA, and they are known to produce overly conservative results. Therefore, strain-based ECA has been recently developed as an alternative approach. One of the effective methods for improving the accuracy of strain-based ECA is the reference strain method. However, only a limited number of studies have applied this method to welded pipelines. Therefore, a numerical analysis based on strain-based ECA was performed for girth-welded joints with a circumferentially oriented internal surface crack. Particular attention was given to the strength mismatch effects. The equivalent stress–strain curve in BS7910 was used to reflect the strength mismatch effects in the reference strain. The results of the proposed method were validated with the results of a finite element analysis (FEA) in terms of the J-integral. Previous methods and the proposed method exhibit a reasonable correlation of the J-integral in the case of over-matching (OM). In the under-matching (UM) cases, while the previous procedures tended to underestimate or excessively overestimate the elastic-plastic energy release rate in comparison with the FEA, the proposed method evaluated the J-integral of pipelines with sufficient accuracy.


Author(s):  
Jae Sung Lee ◽  
Myung Hyun Kim

Abstract Pipelines are effective means to transport oil and gas. It is essential to maintain the safety of pipelines with the increasing demand for oil and gas resource. Welded pipelines may suffer damage such as cracks during installation and operation, and the consequence evaluation for such damage is very important. Engineering critical assessment (ECA) is the evaluation procedure for structures with flaws and has been widely applied for assessing the pipeline integrity. Although main standards of structural integrity assessment including BS 7910 are stress-based ECA, it is known to produce overly conservative results. In this regard, strain-based ECA has been recently developed. One of the methods for improving the accuracy of strain-based ECA is the reference strain method. However, only few researches with reference strain method applied to welded pipes are available. Therefore, in this study, a numerical analysis based on the strain-based ECA is performed for strength mismatched girth welded joints with a circumferentially oriented internal surface crack. Equivalent stress-strain curve in BS7910 is employed to reflect the strength mismatch effects in the reference strain. This paper compares the results from the reference strain method and finite element analysis: J-integral and reference strain. Strain capacity of the reference strain method with strength mismatch is also discussed against stress-based ECA.


Sign in / Sign up

Export Citation Format

Share Document