Effects of Bearings and Housing on Mode Localization of a Nearly Cyclic Symmetric System

Author(s):  
Y. F. Chen ◽  
I. Y. Shen

This paper is to study how flexible bearings and housing affect mode localization of a nearly cyclic symmetric system with mistune. A finite element analysis is first conducted on a reference system that consists of a circular disk and 24 blades with mistune. The disk is annular with an inner rim and an outer rim. A fixed boundary condition is imposed at the inner rim, while the 24 blades with mistune are evenly attached to the outer rim and subjected to a free boundary condition. As a result of the mistune, the reference system presents 26 localized torsional modes as well as 24 localized in-plane modes in its blade vibration. When the fixed inner rim is replaced by a bearing support (i.e., an elastic boundary condition), not only the localized torsional modes can change their natural frequencies and mode shapes but also the number of the localized torsional modes may be increased to 28 in some range of bearing stiffness. Similarly, when the bladed-disk reference system is mounted on a stationary housing via a bearing support, the number of the localized in-plane modes can change from 24 to 33 modes. Moreover, localized mode shapes change significantly, and some of them involve significant housing deformation. To understand this phenomenon theoretically, we first demonstrate that the presence of bearing and housing provides additional degrees of freedom, which, in turn, allow the bladed-disk system to have additional disk modes. When the bearing and housing stiffness is properly tuned, some of these additional disk modes may possess significant torsional or in-plane displacement components in the blades. If these additional modes happen to have a natural frequency that is close to those of the localized modes of the reference system, these additional modes will join the localized modes to form new localized modes. As a result, the number of localized modes increases and the mode shapes change significantly.

2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Y. F. Chen ◽  
I. Y. Shen

This technical brief is to study how flexible bearings and housing affect mode localization of a nearly cyclic symmetric system with mistuning. This study is conducted via finite-element analyses and deductive reasoning. A reference system studied is a bladed disk with two groups of 24 localized modes. When bearings and housing are introduced into the reference system, their presence changes natural frequencies, mode shapes, and the number of the localized modes. Moreover, the mistuning causes bearing forces to surge for all the localized modes. A deductive reasoning based on the existing literature supports the observation from the finite-element analyses.


Author(s):  
John Judge ◽  
Christophe Pierre ◽  
Oral Mehmed

The results of an experimental investigation on the effects of random blade mistuning on the forced dynamic response of bladed disks are reported. The primary aim of the experiment is to gain understanding of the phenomena of mode localization and forced response blade amplitude magnification in bladed disks. A stationary, nominally periodic, twelve-bladed disk with simple geometry is subjected to a traveling-wave, out-of-plane, “engine order” excitation delivered via phase-shifted control signals sent to piezo-electric actuators mounted on the blades. The bladed disk is then mistuned by the addition of small, unequal weights to the blade tips, and it is again subjected to a traveling wave excitation. The experimental data is used to verify analytical predictions about the occurrence of localized mode shapes, increases in forced response amplitude, and changes in resonant frequency due to the presence of mistuning. Very good agreement between experimental measurements and finite element analysis is obtained. The out-of-plane response is compared and contrasted with the previously reported in-plane mode localization behavior of the same test specimen. This work also represents an important extension of previous experimental study by investigating a frequency regime in which modal density is lower but disk-blade interaction is significantly greater.


2000 ◽  
Vol 123 (4) ◽  
pp. 940-950 ◽  
Author(s):  
J. Judge ◽  
C. Pierre ◽  
O. Mehmed

The results of an experimental investigation on the effects of random blade mistuning on the forced dynamic response of bladed disks are reported. The primary aim of the experiment is to gain understanding of the phenomena of mode localization and forced response blade amplitude magnification in bladed disks. A stationary, nominally periodic, 12-bladed disk with simple geometry is subjected to a traveling-wave out-of-plane “engine order” excitation delivered via phase-shifted control signals sent to piezoelectric actuators mounted on the blades. The bladed disk is then mistuned by the addition of small, unequal weights to the blade tips, and it is again subjected to a traveling wave excitation. The experimental data is used to verify analytical predictions about the occurrence of localized mode shapes, increases in forced response amplitude, and changes in resonant frequency due to the presence of mistuning. Very good agreement between experimental measurements and finite element analysis is obtained. The out-of-plane response is compared and contrasted with the previously reported in-plane mode localization behavior of the same test specimen. This work also represents an important extension of previous experimental study by investigating a frequency regime in which modal density is lower but disk-blade interaction is significantly greater.


Author(s):  
M.-T. Yang ◽  
J. H. Griffin

Reduced order models have been reported in the literature that can be used to predict the harmonic response of mistuned bladed disks. It has been shown that in many cases they exhibit structural fidelity comparable to a finite element analysis of the full bladed disk system while offering a significant improvement in computational efficiency. In these models the blades and disk are treated as distinct substructures. This paper presents a new, simpler approach for developing reduced order models in which the modes of the mistuned system are represented in terms of a sub-set of nominal system modes. It has the following attributes: the input requirements are relatively easy to generate; it accurately predicts mistuning effects in regions where frequency veering occurs; as the number of degrees of freedom increases it converges to the exact solution; it accurately predicts stresses as well as displacements; and it accurately models the deformation and stresses at the blades’ bases.


Author(s):  
Marlin J. Kruse ◽  
Christophe Pierre

The results of an experimental investigation of the effects of random blade mistuning on the free dynamic response of bladed disks are reported. Two experimental specimens are considered: a nominally periodic twelve-bladed disk with equal blade lengths, and the corresponding mistuned bladed disk, which features slightly different, random blade lengths. In the experiment, both the spatially extended modes of the tuned system and the localized modes of the mistuned system are identified. Particular emphasis is placed on the transition to localized mode shapes as the modal density in various frequency regions increases. Excellent qualitative and quantitative agreement is obtained between experimental measurements and results obtained by finite element analysis. Experimental results are additionally used to validate a component mode-based, reduced-order modeling technique for bladed disks. This work reports the first systematic experiment carried out to demonstrate the occurrence of vibration localization in bladed disks.


2020 ◽  
Vol 12 (11) ◽  
pp. 168781402097306
Author(s):  
Hui Zhang ◽  
Tianyu Zhao ◽  
Hongyuan Zhang ◽  
Honggang Pan ◽  
Huiqun Yuan

In order to study the rubbing of the mistuned bladed disk system with variable thickness blades, an elastically supported shaft-variable thickness blades coupled finite element model is established in this paper. A new rubbing force model is proposed considering the variable thickness section characteristics and rotation effect of the variable thickness blade. A method of mistuned parameter identification is introduced which consists of static frequency testing of blades, dichotomy, and finite element analysis. Based on the finite element method, the mistuned bladed disk system is made dynamic analysis in full rubbing by applying the judgment load method. The dynamic response of the mistuned bladed disk system is discussed under different conditions. The results show that increasing the amount of mistuning will increase the system vibration. At high speeds, the impact force will be partially offset by centrifugal force. And the rubbing gap affects the form of rubbing. With the gap decreases, the system will change from intermittent rubbing to continuous rubbing. In addition, when the system is rubbed, due to energy dissipation and blade damping, the stress is transferred from the blade tip to the blade root and attenuated. In general, rubbing is a random complex nonlinear vibration process.


2021 ◽  
Vol 11 (7) ◽  
pp. 3084
Author(s):  
Honggang Pan ◽  
Yunshi Wu ◽  
Tianyu Zhao

As the main components of the rotor system of aero-engines and other rotating machinery equipment, the bladed disk system has high requirements on its structure design, safety and stability. Taking the rotor disk system of aero-engines as the research object, modal calculation of the rotor disk system was based on the group theory algorithm, and using the fine sand movement on the experimental disk to express the disk vibration shape. The experimental vibration mode is used to compare with the finite element calculation results to verify the reliability of the finite element analysis. Study on the effect of dissonance parameter changes on the bladed disk system vibration characteristics concluded that the vibration mode trends of the blisk system and the disc are, basically, consistent. As the mass of the blade increases, the modal frequencies of the entire blisk system gradually decrease, and the amplitude slightly increases. When the mass increases at different parts of the blade, the effect on the modal frequencies of the bladed disk system are not obvious. When the bladed disk system vibrates at low frequency, the disc will not vibrate and each blade will vibrate irregularly. The bladed disk should be avoided to work in this working area for a long time, so as not to cause fatigue damage or even fracture of some blades.


Author(s):  
François Moyroud ◽  
Torsten Fransson ◽  
Georges Jacquet-Richardet

The high performance bladed-disks used in today’s turbomachines must meet strict standards in terms of aeroelastic stability and resonant response level. One structural characteristic that can significantly impact on both these area is that of bladed-disk mistuning. To predict the effects of mistuning, computationally efficient methods are necessary to make it feasible, especially in an industrial environment, to perform free vibration and forced response analyses of full assembly finite element models. Due to the size of typical finite element models of industrial bladed-disks, efficient reduction techniques must be used to systematically produce reduced order models. The objective of this paper is to compare two prevalent reduction methods on representative test rotors, including a modern design industrial shrouded bladed-disk, in terms of accuracy (for frequencies and mode shapes), reduction order, computational efficiency, sensitivity to inter-sector elastic coupling, and ability to capture the phenomenon of mode localization. The first reduction technique employs a modal reduction approach with a modal basis consisting of mode shapes of the tuned bladed-disk which can be obtained from a classical cyclic symmetric modal analysis. The second reduction technique is based on a Craig and Bampton substructuring and reduction approach. The results show a perfect agreement between the two reduced order models and the non-reduced finite element model. It is found that the phenomena of mode localization is equally well predicted by the two reduction models. In terms of computational cost, reductions from 1 to 2 orders of magnitude are obtained for the industrial bladed-disk, with the modal reduction method being the most computationally efficient approach.


1999 ◽  
Vol 123 (4) ◽  
pp. 893-900 ◽  
Author(s):  
M.-T. Yang ◽  
J. H. Griffin

Reduced-order models have been reported in the literature that can be used to predict the harmonic response of mistuned bladed disks. It has been shown that in many cases they exhibit structural fidelity comparable to a finite element analysis of the full bladed disk system while offering a significant improvement in computational efficiency. In these models the blades and disk are treated as distinct substructures. This paper presents a new, simpler approach for developing reduced-order models in which the modes of the mistuned system are represented in terms of a subset of nominal system modes. It has the following attributes: the input requirements are relatively easy to generate; it accurately predicts mistuning effects in regions where frequency veering occurs; as the number of degrees-of-freedom increases it converges to the exact solution; it accurately predicts stresses as well as displacements; and it accurately models the deformation and stresses at the blades’ bases.


Author(s):  
J. A. Kenyon ◽  
J. H. Griffin ◽  
N. E. Kim

A continuous method is presented for representing the mode interaction that occurs in frequency veering in terms of the nominal sector modes of a cyclic symmetric bladed disk model constrained at a fixed reference interblade phase angle. Using this method, the effect of frequency veering on the mode shapes can be considered in the context of the generalized forces exciting the system and the modal response of the bladed disk. It is shown that in a blade-dominated family of modes, the transfer of modal energy to the disk in the veering results in a lower generalized force exciting the mode as well as reduced response amplitude in the blade. For the disk-dominated modes, the sharing of modal energy with the blades can lead to the disk being excited by aerodynamic loading. These effects can have important implications for predicting and interpreting forced response in bladed disks. Numerical examples are provided to illustrate these concepts.


Sign in / Sign up

Export Citation Format

Share Document