Steady MHD Flow for Molten Metal Coolants in Advanced Nuclear Systems

Author(s):  
Zafar Ullah Koreshi

The flow of a molten metal coolant, incorporating viscosity and a magnetic force in a channel typical of a nuclear fusion reactor is formulated. This is based on the flow conservation equations (continuity and momentum), along with Maxwell’s equations and Ohm’s law. These equations are solved with assumptions of steady fully-developed flow for Newtonian fluids. Exact solutions are compared with a Direct Numerical Simulation (DNS) to compute important engineering design parameters such as velocity distribution and pressure drop in a coolant channel. The analysis can be used for several candidate coolants including, molten lithium, sodium, lead, and compounds. The difference in velocity profile, and hence pressure drop, is strongly dependent on the magnetic field. In fact, it is shown that a flat (almost-turbulent) profile is obtained for the flow.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Farideh Haghighi ◽  
Zahra Talebpour ◽  
Amir Sanati-Nezhad

AbstractFlow distributor located at the beginning of the micromachined pillar array column (PAC) has significant roles in uniform distribution of flow through separation channels and thus separation efficiency. Chip manufacturing artifacts, contaminated solvents, and complex matrix of samples may contribute to clogging of the microfabricated channels, affect the distribution of the sample, and alter the performance of both natural and engineered systems. An even fluid distribution must be achieved cross-sectionally through careful design of flow distributors and minimizing the sensitivity to clogging in order to reach satisfactory separation efficiency. Given the difficulty to investigate experimentally a high number of clogging conditions and geometries, this work exploits a computational fluid dynamic model to investigate the effect of various design parameters on the performance of flow distributors in equally spreading the flow along the separation channels in the presence of different degrees of clogging. An array of radially elongated hexagonal pillars was selected for the separation channel (column). The design parameters include channel width, distributor width, aspect ratio of the pillars, and number of contact zone rows. The performance of known flow distributors, including bifurcating (BF), radially interconnected (RI), and recently introduced mixed-mode (MMI) in addition to two new distributors designed in this work (MMII and MMIII) were investigated in terms of mean elution time, volumetric variance, asymmetry factors, and pressure drop between the inlet and the monitor line for each design. The results show that except for pressure drop, the channel width and aspect ratio of the pillars has no significant influence on flow distribution pattern in non-clogged distributors. However, the behavior of flow distributors in response to clogging was found to be dependent on width of the channels. Also increasing the distributor width and number of contact zone rows after the first splitting stage showed no improvement in the ability to alleviate the clogging. MMI distributor with the channel width of 3 µm, aspect ratio of the pillars equal to 20, number of exits of 8, and number of contact zones of 3 exhibited the highest stability and minimum sensitivity to different degrees of clogging.


2015 ◽  
Vol 35 (4) ◽  
pp. 341-347 ◽  
Author(s):  
E. Rouhani ◽  
M. J. Nategh

Purpose – The purpose of this paper is to study the workspace and dexterity of a microhexapod which is a 6-degrees of freedom (DOF) parallel compliant manipulator, and also to investigate its dimensional synthesis to maximize the workspace and the global dexterity index at the same time. Microassembly is so essential in the current industry for manufacturing complicated structures. Most of the micromanipulators suffer from their restricted workspace because of using flexure joints compared to the conventional ones. In addition, the controllability of micromanipulators inside the whole workspace is very vital. Thus, it is very important to select the design parameters in a way that not only maximize the workspace but also its global dexterity index. Design/methodology/approach – Microassembly is so essential in the current industry for manufacturing complicated structures. Most of the micromanipulators suffer from their restricted workspace because of using flexure joints compared to the conventional ones. In addition, the controllability of micromanipulators inside the whole workspace is very vital. Thus, it is very important to select the design parameters in a way that not only maximize the workspace but also its global dexterity index. Findings – It has been shown that the proposed procedure for the workspace calculation can considerably speed the required calculations. The optimization results show that a converged-diverged configuration of pods and an increase in the difference between the moving and the stationary platforms’ radii cause the global dexterity index to increase and the workspace to decrease. Originality/value – The proposed algorithm for the workspace analysis is very important, especially when it is an objective function of an optimization problem based on the search method. In addition, using screw theory can simply construct the homogeneous Jacobian matrix. The proposed methodology can be used for any other micromanipulator.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Raed I. Bourisli ◽  
Adnan A. AlAnzi

This work aims at developing a closed-form correlation between key building design variables and its energy use. The results can be utilized during the initial design stages to assess the different building shapes and designs according to their expected energy use. Prototypical, 20-floor office buildings were used. The relative compactness, footprint area, projection factor, and window-to-wall ratio were changed and the resulting buildings performances were simulated. In total, 729 different office buildings were developed and simulated in order to provide the training cases for optimizing the correlation’s coefficients. Simulations were done using the VisualDOE TM software with a Typical Meteorological Year data file, Kuwait City, Kuwait. A real-coded genetic algorithm (GA) was used to optimize the coefficients of a proposed function that relates the energy use of a building to its four key parameters. The figure of merit was the difference in the ratio of the annual energy use of a building normalized by that of a reference building. The objective was to minimize the difference between the simulated results and the four-variable function trying to predict them. Results show that the real-coded GA was able to come up with a function that estimates the thermal performance of a proposed design with an accuracy of around 96%, based on the number of buildings tested. The goodness of fit, roughly represented by R2, ranged from 0.950 to 0.994. In terms of the effects of the various parameters, the area was found to have the smallest role among the design parameters. It was also found that the accuracy of the function suffers the most when high window-to-wall ratios are combined with low projection factors. In such cases, the energy use develops a potential optimum compactness. The proposed function (and methodology) will be a great tool for designers to inexpensively explore a wide range of alternatives and assess them in terms of their energy use efficiency. It will also be of great use to municipality officials and building codes authors.


Author(s):  
B. Woolford ◽  
K. Jeffs ◽  
D. Maynes ◽  
B. W. Webb

Microfluidic transport is finding increasing application in a number of emerging technologies. At these scales, classical analysis shows that the required fluid driving pressure is inversely proportional to the hydraulic diameter to the fourth power. Consequently, generating fluid motion at these physical scales is a challenge. There is thus considerable incentive for developing strategies to reduce the frictional resistance to fluid flow. A novel approach recently proposed is fabrication of micro-ribs and cavities in the channel walls which are treated with a hydrophobic coating. This reduces the surface contact area between the flowing liquid and the solid wall, yielding walls with no-slip and shear-free regions at the microscale. The shear-free regions consist of a liquid-vapor meniscus above the cavities between micro-ribs. Reductions in the flow resistance are thus possible. This paper reports results of an analytical and experimental investigation of the laminar, fully-developed flow in a parallel plate microchannel whose walls are microengineered in this fashion. The micro-ribs and cavities are oriented parallel to the flow direction. The channel walls are modeled in an idealized fashion, with the shape of liquid-vapor meniscus approximated as flat and characterized by vanishing shear stress. Predictions are presented for the friction factor-Reynolds number product as a function of relevant governing dimensionless parameters. Comparisons are made between the smooth-wall classical channel flow results and predictions for the microengineered channel walls. Results show that significant reductions in the frictional pressure drop are possible. Reductions in frictional resistance increase as the channel hydraulic diameter and/or micro-rib width are reduced. The frictional pressure drop predictions are in good agreement with experimental measurements made at dynamically similar conditions, with greater deviation observed with increasing relative size of the shear-free regions.


1995 ◽  
Vol 268 (5) ◽  
pp. F972-F979
Author(s):  
A. Remuzzi ◽  
B. Ene-Iordache

Anatomical studies have demonstrated that the glomerular capillaries are complex and heterogeneous networks. Conventional models of glomerular size selectivity, however, are based on the assumption of simplified geometries. We developed a theoretical model of glomerular size-selective function based on the geometric data obtained in a previous reconstruction of a glomerular network from a normal Munich-Wistar rat. This heterogeneous model was compared with the homogeneous model conventionally used to calculate membrane selective parameters from the fractional clearance of two test solutes, neutral dextran and Ficoll. For both models we assumed a hypothetical log-normal distribution of pore sizes and calculated optimal membrane pore-size parameters using previously published values of fractional clearances. The difference between the sieving coefficients calculated with the two models was negligible, never exceeding 5.5%. Since the homogeneous model does not consider the pressure drop along the glomerular capillary, we also computed fractional clearances with the homogeneous model, assuming the same pressure drop as in the heterogeneous one. The differences in computed fractional clearances using the homogeneous model with and without a pressure drop were less than 1.2%. We concluded that models based on identical capillary networks can therefore be used for interpreting sieving coefficients for macromolecules.


2014 ◽  
Vol 23 (09) ◽  
pp. 1430015 ◽  
Author(s):  
Peter U. Sauer

In this paper, the role of three-nucleon forces in ab initio calculations of nuclear systems is investigated. The difference between genuine and induced many-nucleon forces is emphasized. Induced forces arise in the process of solving the nuclear many-body problem as technical intermediaries toward calculationally converged results. Genuine forces make up the Hamiltonian. They represent the chosen underlying dynamics. The hierarchy of contributions arising from genuine two-, three- and many-nucleon forces is discussed. Signals for the need of the inclusion of genuine three-nucleon forces are studied in nuclear systems, technically best under control, especially in three-nucleon and four-nucleon systems. Genuine three-nucleon forces are important for details in the description of some observables. Their contributions to observables are small on the scale set by two-nucleon forces.


2022 ◽  
Author(s):  
Joern Loehken ◽  
Davood Yosefnejad ◽  
Liam McNelis ◽  
Bernd Fricke

Abstract Due to the increases in completion costs demand for production improvements, fracturing through double casing in upper reservoirs for mature wells and refracturing early stimulated wells to change the completion design, has become more and more popular. One of the most common technologies used to re-stimulate previously fracked wells, is to run a second, smaller casing or tubular inside of the existing and already perforated pipes of the completed well. The new inner and old outer casing are isolated from each other by a cement layer, which prevents any hydraulic communication between the pre-existing and new perforations, as well as between adjacent new perforations. For these smaller inner casing diameters, specially tailored and designed re-fracturing perforation systems are deployed, which can shoot casing entrance holes of very similar size through both casings, nearly independent of the phasing and still capable of creating tunnels reaching beyond the cement layer into the natural rock formation. Although discussing on the API RP-19B section VII test format has recently been initiated and many companies have started to test multiple casing scenarios and charge performance, not much is known about the complex flow through two radially aligned holes in dual casings. In the paper we will look in detail at the parameters which influence the flow, especially the Coefficient of Discharge of such a dual casing setup. We will evaluate how much the near wellbore pressure drop is affected by the hole's sizes in the first and second casing, respectively the difference between them and investigate how the cement layer is influenced by turbulences, which might build up in the annulus. The results will enhance the design and provide a better understanding of fracturing or refracturing through double casings for hydraulic fracturing specialists and both operation and services companies.


2022 ◽  
Author(s):  
Mark Mcclure ◽  
Garrett Fowler ◽  
Matteo Picone

Abstract In URTeC-123-2019, a group of operators and service companies presented a step-by-step procedure for interpretation of diagnostic fracture injection tests (DFITs). The procedure has now been applied on a wide variety of data across North and South America. This paper statistically summarizes results from 62 of these DFITs, contributed by ten operators spanning nine different shale plays. URTeC-123-2019 made several novel claims, which are tested and validated in this paper. We find that: (1) a ‘compliance method’ closure signature is apparent in the significant majority of DFITs; (2) in horizontal wells, early time pressure drop due to near-wellbore/midfield tortuosity is substantial and varies greatly, from 500 to 6000+ psi; (3) in vertical wells, early-time pressure drop is far weaker; this supports the interpretation that early- time pressure drop in horizontal wells is caused by near-wellbore/midfield tortuosity from transverse fracture propagation; (4) the (not recommended) tangent method of estimating closure yields Shmin estimates that are 100-1000+ psi lower than the estimate from the (recommended) compliance method; the implied net pressure values are 2.5x higher on average and up to 5-6x higher; (5) as predicted by theory, the difference between the tangent and compliance stress and net pressure estimates increases in formations with greater difference between Shmin and pore pressure; (6) the h-function and G-function methods allow permeability to be estimated from truncated data that never reaches late-time impulse flow; comparison shows that they give results that are close to the permeability estimates from impulse linear flow; (7) false radial flow signatures occur in the significant majority of gas shale DFITs, and are rare in oil shale DFITs; (8) if false radial signatures are used to estimate permeability, they tend to overestimate permeability, often by 100x or more; (9) the holistic-method permeability correlation overestimates permeability by 10-1000x; (10) in tests that do not reach late-time impulse transients, it is reasonable to make an approximate pore pressure estimate by extrapolating the pressure from the peak in t*dP/dt using a scaling of t^(-1/2) in oil shales and t^(3/4) in gas shales. The findings have direct practical implications for operators. Accurate permeability estimates are needed for calculating effective fracture length and for optimizing well spacing and frac design. Accurate stress estimation is fundamental to hydraulic fracture design and other geomechanics applications.


2014 ◽  
Vol 9 (4) ◽  
pp. 155892501400900 ◽  
Author(s):  
Jian Yong Feng ◽  
Jian Chun Zhang ◽  
Daxiang Yang

In this paper, PVA electrospun nanofiber was prepared on the surface of three different automobile engine oil filtration materials including polyester nonwoven, glass fiber nonwoven, and cotton pulp filtration paper. It was found that the substrate of cotton pulp filtration paper and the nanofiber layer had better adhesive effect. Then we A comparison of fiber diameter, pore diameter, filtration accuracy and pressure drop between the cotton pulp paper and nanofiber composite filtration material was then made. The results show that the nanofiber composite material had smaller pore diameter and filtration accuracy, higher pressure drop, and better oil filtration property. Additionally, the difference of pressure drop between the substrate and nanofiber composite material increased with increasing flow rate of experimental oil. The goal of this paper was use the electrospun nanofiber in the automobile engine oil filtration.


Sign in / Sign up

Export Citation Format

Share Document