Analytical Study for Lateral Buckling of Imperfect Pipelines With Distributed Buoyancy Section

Author(s):  
Zhenkui Wang ◽  
G. H. M. van der Heijden ◽  
Yougang Tang

Abstract Distributed buoyancy method is one of the buckle initiation techniques used to trigger controlled lateral buckling at planned locations for subsea pipelines operating under high temperature and high pressure (HT/HP) conditions. Deviations from a straight profile for pipelines may be introduced by the pipe-laying vessel’s sway motion during the installation process. In this study, analytical solutions of lateral buckling are deduced for imperfect unburied subsea pipelines with a distributed buoyancy section. The effect of initial imperfections on buckled configurations and typical post-buckling behaviours is illustrated and analysed. The results show that, compared to the case without initial imperfection, lateral displacement amplitude becomes larger when initial imperfection exists. Maximum compressive stress increases when wavelength of initial imperfection is smaller than buckled length of pipeline. However, maximum compressive stress decreases when wavelength of initial imperfection is larger than buckled length of pipeline. So it’s better to introduce longer wavelength of initial imperfection.

2013 ◽  
Vol 437 ◽  
pp. 62-65
Author(s):  
Ji Nao Zhang

This paper conducts three-dimensional, nonlinear finite element analysis to investigate the results of using different solution methods and the influence of initial imperfections and material plasticity on failure modes and maximum load of various Z-shaped column lengths; it also compares the column buckling responses between various lengths, each with different initial imperfections. Further analyses include investigating the element suitability and computational costs. Results showed that both displacement control method and Riks method are fully capable of receiving promising results from this analysis. In terms of the effects of initial imperfection and material plasticity on the maximum load that column could carry, the imperfection is the major contributing factor when the column is long whereas the plasticity is the major contributing factor when the column is short.


2021 ◽  
Vol 233 ◽  
pp. 109124
Author(s):  
Zhenkui Wang ◽  
Nuo Duan ◽  
C. Guedes Soares

2011 ◽  
Vol 374-377 ◽  
pp. 2297-2300
Author(s):  
Hai Zhao ◽  
Ya Zhou Xu ◽  
Guo Liang Bai

The uncontrollable factors such as construction errors, material inhomogeneity, etc. will inevitably lead to a certain initial imperfections. It is generally known that the stochastic initial imperfection of the structure is an important factor for affecting structural stability and bearing capacity. Since these imperfections are random in nature, this paper proposes the method mainly based on the standard orthogonal basis to expand the stochastic field, taking into account the decomposition of the stochastic initial imperfections related to structures, which is projected in the buckling mode orthogonal basis. In the end, the article by the stability analysis example shows that this method can use less random variables effectively describing the original stochastic imperfection field, and efficiently search for the most unfavorable initial imperfection distribution form in order to ensure the imperfection sensitivity structures have a higher reliability, so it can be applied to large-scale engineering structure stochastic imperfection analysis.


2021 ◽  
Vol 116 ◽  
pp. 102863
Author(s):  
Zhenkui Wang ◽  
Yougang Tang ◽  
Nuo Duan

Author(s):  
Bruno Reis Antunes ◽  
Rafael Familiar Solano ◽  
Alexandre Hansen

Buckle formation process is a key subject for the design of subsea pipelines laid on the seabed and operating under high pressure and high temperature (HP/HT) conditions. When the controlled lateral buckling methodology is adopted triggers are placed along pipeline route in order to increase the buckle formation probability in specific locations, sharing pipeline expansion between these sites and reducing the level of stress and strain in each buckle. Despite of its importance, buckle formation process is influenced by several parameters such as the seabed bathymetry, engineered triggers, lateral out-of-straightness (OOS) and pipe-soil interaction. While the first two items above can be defined with reasonable accuracy at previous stages of design, lateral OOS will only be known with tolerable confidence after pipeline installation. The level of uncertainty related to pipe-soil interaction is also considerable since pipeline embedment and friction factors are estimated using equations that include empirical correlations and field collected data. In addition these parameters are influenced by the installation process. Due to these uncertainties, conservative premises are usually assumed in order to obtain a robust pipeline thermo-mechanical design. After pipeline installation and/or start of operation an investigation can be performed in order to confirm the assumptions considered in the design. This paper presents a comparison of premises adopted during design stage of a pipeline based on the controlled lateral buckling methodology and the feedback obtained with the post-lay survey performed. After a brief introduction, pipeline embedment, global buckling at crossings, lateral OOS and sleepers’ height are some of the subjects addressed. Finally, conclusions and recommendations are presented in order to support future similar projects.


2007 ◽  
Vol 345-346 ◽  
pp. 629-632
Author(s):  
Dong Geun Lee ◽  
Yang Gon Kim ◽  
Byoung Chul Hwang ◽  
Sung Hak Lee ◽  
Nack J. Kim

Dynamic deformation and fracture behavior of Zr-based bulk metallic glass (BMG) and BMG composite containing dendritic β phases was investigated in this study. Dynamic compressive test results indicated that both maximum compressive stress and total strain of the BMG and BMG composite decreased with increasing test temperature because shear bands could propagate rapidly as the adiabatic heating effect was added at high temperatures. Above the glass transition temperature, total strain decreased more abruptly due to crystallization of amorphous phases. Maximum compressive stress and total strain of the BMG composite were higher than those of the BMG because β phases played a role in forming multiple shear bands. The BMG composite having more excellent dynamic properties than the BMG can be more reliably applied to the structures or parts requiring dynamic properties.


2014 ◽  
Vol 21 (1) ◽  
pp. 416-427 ◽  
Author(s):  
Run Liu ◽  
Wen-bin Liu ◽  
Xin-li Wu ◽  
Shu-wang Yan

2020 ◽  
Vol 313 ◽  
pp. 00006
Author(s):  
Martin Psotný

The post buckling of a rectangular slender web in compression has been analyzed. Shapes of a buckling area obtained from the nonlinear analysis have been compared with buckling modes from the linearized problem for various aspect ratios. Effects of initial shape imperfections upon the analysis have been investigated using nonlinear approach. To trace the complete nonlinear equilibrium curves, specialized code based on FEM was created. The Newton-Raphson iteration algorithm was used, load versus displacement control was changed during the process of calculation. Obtained results were verified using Ansys system, in this case arc-length method was activated for overcoming critical points.


2019 ◽  
Vol 974 ◽  
pp. 551-555 ◽  
Author(s):  
I.M. Zotov ◽  
Anastasia P. Lapina ◽  
Anton S. Chepurnenko ◽  
B.M. Yazyev

The article presents the derivation of the resolving equation for the calculation of lateral buckling of rectangular beams. When deriving the basic equation, the initial imperfections of the beam are taken into account, which are specified in the form of the eccentricity of the applied load, the initial deflection in the plane of least stiffness and the initial twist angle. The influence of initial imperfections on the process of beam stability loss is investigated.


Sign in / Sign up

Export Citation Format

Share Document