Buckling Considerations for U-Shaped Bellows Utilized in Flexible Metal Hoses
This paper describes some of the considerations for evaluating the structural adequacy of flexible metal hoses utilized in a petro-chemical or process type environment. Specifically, the issues associated with the instability of the metal U-shaped bellows, from which the hose derives its overall flexibility and name, are reviewed and discussed in detail. In an effort to provide a comprehensive examination of the flexible hose’s use in the petro-chemical industry, a discussion of the applied mechanics associated with both column buckling of the bellows (also known as “squirm”) and in-plane buckling is presented. Results from a non-linear column buckling finite element analysis (FEA) of the U-shaped bellows are described and compared against previously published theoretical works on the instability of shells of revolution and most specifically, toroids. The applied loads in the finite element analyses include both internal pressure and transverse displacements (i.e., translations perpendicular to the longitudinal axis of the hose/bellows assembly). In addition, the guidance provided by the rules of the Expansion Joint Manufacturers Association Standards (EJMA) with regard to squirm are also reviewed and discussed. Finally, the results of both the theoretical and analytical investigations into the squirm phenomenon are utilized to identify some very practical solutions and recommendations to avoid the possibility of catastrophic failure of U-shaped bellows from column type instability.