MERCURY PHOTOSENSITIZED DECOMPOSITION OF ETHYLENE OXIDE

1955 ◽  
Vol 33 (11) ◽  
pp. 1684-1695 ◽  
Author(s):  
R J Cvetanović

Some aspects of the mercury photosensitized decomposition of ethylene oxide at room temperature have been reinvestigated. At least two, and probably more than two, distinct primary steps occur. The previously assumed major primary formation of hydrogen by a molecular process is shown to occur to a relatively small extent only. Hydrogen atoms play an important role in the process, as well as the following radicals: CH3, CHO, CH2CHO, and C2H5, and probably to a lesser extent also CH2. The products formed are CO, H2, C2H6, a little CH2CO and C2H4, and large amounts of aldehydes. The presence of higher aldehydes has been demonstrated. While there is a general similarity to the other modes of decomposition of ethylene oxide, a unique and unambiguous solution of the complete reaction mechanism is at present not possible.

2013 ◽  
Vol 9 ◽  
pp. 8-14 ◽  
Author(s):  
Yan Sun ◽  
Jing Sun ◽  
Chao-Guo Yan

A fast and convenient protocol for the synthesis of novel spiro[dihydropyridine-oxindole] derivatives in satisfactory yields was developed by the three-component reactions of arylamine, isatin and cyclopentane-1,3-dione in acetic acid at room temperature. On the other hand the condensation of isatin with two equivalents of cyclopentane-1,3-dione gave 3,3-bis(2-hydroxy-5-oxo-cyclopent-1-enyl)oxindole in high yields. The reaction mechanism and substrate scope of this novel reaction is briefly discussed.


2020 ◽  
Vol 50 (4) ◽  
Author(s):  
_ Yiyun Yao ◽  
Alain J. Corso ◽  
Marco Bazzan ◽  
Enrico Tessarolo ◽  
Zhanshan Wang ◽  
...  

H2 sensing performance of novel Pd–Pt alloy films has been compared with those obtained by using Pd films and H2-reducted PdO films. Two different detecting systems were used to measure the hydrogenation and de-hydrogenation phases with a H2 concentration of both 5% v/v nitrogen and 1% v/v nitrogen at room temperature. The sensitivity loss observed for the Pd–Pt alloy and H2-reducted PdO samples with respect to pure Pd samples can be explained in terms of the reduction in the lattice constant and interstitial volume due to the Pt addition, which determine a decrement of hydrogen atoms penetrating in the films. On the other hand, results show an improvement in time -response for Pd–Pt alloy and H2-reducted PdO films with respect to pure Pd ones, presumably due to the increase of its permeability to H2. Moreover, the sensing measurements repeated after 60 days show that the Pd–Pt alloy films, unlike the Pd-based ones, fully preserve their performances, demonstrating the advantage of the Pt inclusion for stability purposes when the samples are stored upon humidity.


2003 ◽  
Vol 81 (11) ◽  
pp. 1299-1306 ◽  
Author(s):  
Frédéric-Georges Fontaine ◽  
René-Viet Nguyen ◽  
Davit Zargarian

Abstraction of Cl– from the complexes (indenyl)Ni(PPh3)Cl generates cationic species that are effective precatalysts for the hydrosilylation of some olefins and ketones. For instance, the mixture of (1-Me-indenyl)Ni(PPh3)Cl and NaBPh4 (or methylaluminoxane) reacts at room temperature with ca. 100 equiv. each of PhSiH3 and styrene to produce [1-phenyl-1-ethyl](phenyl)silane, PhCH(CH3)(SiPhH2), in 50%–80% yield. The same system can also catalyze the hydrosilylation of 1-hexene and norbornene, but the products arising from these substrates consist of mixtures of regio- and stereoisomers. On the other hand, ketone hydrosilylation is regiospecific, giving the corresponding silyl ethers in high yields. A number of experimental observations have indicated that the initially generated Ni-based cation is not the catalytically active species. Indeed, the cationic initiators may be replaced by LiAlH4 or AlMe3, which generate the corresponding Ni-H or Ni-Me derivatives, respectively. Moreover, the observed regioselectivity for the addition of PhSiH3 to styrene (i.e., predominant addition of the silyl fragment to the α-C) is opposite of what would be expected if the reaction mechanism involved carbocationic intermediates. A new mechanism is proposed in which the active species is a Ni-H species originating from the transfer of H– from PhSiH3 to the initially generated Ni cation. Key words: hydrosilylation, nickel indenyl complexes, cationic complexes, hydride intermediates.


Author(s):  
R. Haswell ◽  
U. Bangert ◽  
P. Charsley

A knowledge of the behaviour of dislocations in semiconducting materials is essential to the understanding of devices which use them . This work is concerned with dislocations in alloys related to the semiconductor GaAs . Previous work on GaAs has shown that microtwinning occurs on one of the <110> rosette arms after indentation in preference to the other . We have shown that the effect of replacing some of the Ga atoms by Al results in microtwinning in both of the rosette arms.In the work to be reported dislocations in specimens of different compositions of Gax Al(1-x) As and Gax In(1-x) As have been studied by using micro indentation on a (001) face at room temperature . A range of electron microscope techniques have been used to investigate the type of dislocations and stacking faults/microtwins in the rosette arms , which are parallel to the [110] and [10] , as a function of composition for both alloys . Under certain conditions microtwinning occurs in both directions . This will be discussed in terms of the dislocation mobility.


Alloy Digest ◽  
1960 ◽  
Vol 9 (7) ◽  

Abstract HAYNES STELLITE 98M2 Alloy is a cobalt-base alloy having higher compressive strength and higher hardness than all the other cobalt-base alloys at room temperature and in the red heat range. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive strength as well as fracture toughness. It also includes information on heat treating, machining, and joining. Filing Code: Co-22. Producer or source: Haynes Stellite Company.


1992 ◽  
Vol 57 (11) ◽  
pp. 2302-2308
Author(s):  
Karel Mocek ◽  
Erich Lippert ◽  
Emerich Erdös

The kinetics of the reaction of solid sodium carbonate with sulfur dioxide depends on the microstructure of the solid, which in turn is affected by the way and conditions of its preparation. The active form, analogous to that obtained by thermal decomposition of NaHCO3, emerges from the dehydration of Na2CO3 . 10 H2O in a vacuum or its weathering in air at room temperature. The two active forms are porous and have approximately the same specific surface area. Partial hydration of the active Na2CO3 in air at room temperature followed by thermal dehydration does not bring about a significant decrease in reactivity. On the other hand, if the preparation of anhydrous Na2CO3 involves, partly or completely, the liquid phase, the reactivity of the product is substantially lower.


2007 ◽  
Vol 131-133 ◽  
pp. 425-430 ◽  
Author(s):  
Anis M. Saad ◽  
Oleg Velichko ◽  
Yu P. Shaman ◽  
Adam Barcz ◽  
Andrzej Misiuk ◽  
...  

The silicon substrates were hydrogenated at approximately room temperature and hydrogen concentration profiles vs. depth have been measured by SIMS. Czochralski grown (CZ) wafers, both n- and p-type conductivity, were used in the experiments under consideration. For analysis of hydrogen transport processes and quasichemical reactions the model of hydrogen atoms diffusion and quasichemical reactions is proposed and the set of equations is obtained. The developed model takes into account the formation of bound hydrogen in the near surface region, hydrogen transport as a result of diffusion of hydrogen molecules 2 H , diffusion of metastable complexes * 2 H and diffusion of nonequilibrium hydrogen atoms. Interaction of 2 H with oxygen atoms and formation of immobile complexes “oxygen atom - hydrogen molecule” (O - H2 ) is also taken into account to explain the hydrogen concentration profiles in the substrates of n-type conductivity. The computer simulation based on the proposed equations has shown a good agreement of the calculated hydrogen profiles with the experimental data and has allowed receiving a value of the hydrogen molecules diffusivity at room temperature.


2003 ◽  
Vol 76 (4) ◽  
pp. 876-891 ◽  
Author(s):  
R. N. Datta ◽  
A. G. Talma ◽  
S. Datta ◽  
P. G. J. Nieuwenhuis ◽  
W. J. Nijenhuis ◽  
...  

Abstract The use of thiurams such as Tetramethyl thiuram disulfide (TMTD) or Tetrabenzyl thiuram disulfide (TBzTD) has been explored to achieve higher cure efficiency. The studies suggest that a clear difference exists between the effect of TMTD versus TBzTD. TMTD reacts with Bis (triethoxysilylpropyl) tetrasulfide (TESPT) and this reaction can take place even at room temperature. On the other hand, the reaction of TBzTD with TESPT is slow and takes place only at higher temperature. High Performance Liquid Chromatography (HPLC) with mass (MS) detection, Nuclear Magnetic Resonance Spectroscopy (NMR) and other analytical tools have been used to understand the differences between the reaction of TMTD and TESPT versus TBzTD and TESPT. The reaction products originating from these reactions are also identified. These studies indicate that unlike TMTD, TBzTD improves the cure efficiency allowing faster cure without significant effect on processing characteristics as well as dynamic properties. The loading of TESPT is reduced in a typical Green tire compound and the negative effect on viscosity is repaired by addition of anhydrides, such as succinic anhydride, maleic anhydride, etc.


1971 ◽  
Vol 44 (5) ◽  
pp. 1256-1272 ◽  
Author(s):  
P. Thirion ◽  
R. Chasset

Abstract The influence of temperature, elongation, swelling or dilution ratio, crosslink density, nature of the polymers, and crosslinking agents on the dynamic properties, creep and relaxation of polymer networks is surveyed in the terminal region of the spectrum. Whereas the deformation does not change the relaxation kinetics in large ranges of extension, the crosslink density acts as a reduced variable apparently accelerating uniformly the viscoelastic processes beyond the glass transition. The other possible reductions ‘time-temperature’ and ‘time—swelling’ do not necessarily seem related to the variations of free volume. From the viewpoint of the explanation of the relaxation mechanisms in the terminal zone, the fact that the equilibrium of loosely crosslinked elastomers would only virtually be reached after several years at room temperature seem in better agreement with chain entanglement effects, either trapped or not by the permanent network, than with the dissociation of secondary linkages.


Sign in / Sign up

Export Citation Format

Share Document