SCALE GAUGE SYMMETRY AND THE STANDARD MODEL

1990 ◽  
Vol 05 (22) ◽  
pp. 4225-4240 ◽  
Author(s):  
J. SOLÀ

We speculate on a version of the "standard" model of the electroweak and strong interactions coupled to gravity and equipped with a spontaneously broken, anomalous, conformal gauge symmetry. The scalar sector is virtually absent in the minimal model but in the general case it shows up in the form of a nonlinear harmonic map Lagrangian. A Euclidean approach to the cosmological constant problem is also addressed in this framework.

2016 ◽  
Vol 13 (06) ◽  
pp. 1650068 ◽  
Author(s):  
Luca Fabbri

We consider the simplest extension of the standard model, where torsion couples to spinor as well as the scalar fields, and in which the cosmological constant problem is solved.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Shing Yan Li ◽  
Yu-Cheng Qiu ◽  
S.-H. Henry Tye

Abstract Guided by the naturalness criterion for an exponentially small cosmological constant, we present a string theory motivated 4-dimensional $$ \mathcal{N} $$ N = 1 non-linear supergravity model (or its linear version with a nilpotent superfield) with spontaneous supersymmetry breaking. The model encompasses the minimal supersymmetric standard model, the racetrack Kähler uplift, and the KKLT anti-D3-branes, and use the nilpotent superfield to project out the undesirable interaction terms as well as the unwanted degrees of freedom to end up with the standard model (not the supersymmetric version) of strong and electroweak interactions.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Kohei Fujikura ◽  
Keisuke Harigaya ◽  
Yuichiro Nakai ◽  
Ruoquan Wang

Abstract We propose a framework where a phase transition associated with a gauge symmetry breaking that occurs (not far) above the electroweak scale sets a stage for baryogenesis similar to the electroweak baryogenesis in the Standard Model. A concrete realization utilizes the breaking of SU(2)R× U(1)X→ U(1)Y. New chiral fermions charged under the extended gauge symmetry have nonzero lepton numbers, which makes the B − L symmetry anomalous. The new lepton sector contains a large flavor-dependent CP violation, similar to the Cabibbo-Kobayashi-Maskawa phase, without inducing sizable electric dipole moments of the Standard Model particles. A bubble wall dynamics associated with the first-order phase transition and SU(2)R sphaleron processes generate a lepton asymmetry, which is transferred into a baryon asymmetry via the ordinary electroweak sphaleron process. Unlike the Standard Model electroweak baryogenesis, the new phase transition can be of the strong first order and the new CP violation is not significantly suppressed by Yukawa couplings, so that the observed asymmetry can be produced. The model can be probed by collider searches for new particles and the observation of gravitational waves. One of the new leptons becomes a dark matter candidate. The model can be also embedded into a left-right symmetric theory to solve the strong CP problem.


2006 ◽  
Vol 15 (12) ◽  
pp. 2267-2278 ◽  
Author(s):  
D. V. AHLUWALIA-KHALILOVA

Assuming the validity of the general relativistic description of gravitation on astrophysical and cosmological length scales, we analytically infer that the Friedmann–Robertson–Walker cosmology with Einsteinian cosmological constant, and a vanishing spatial curvature constant, unambiguously requires a significant amount of dark matter. This requirement is consistent with other indications for dark matter. The same space–time symmetries that underlie the freely falling frames of Einsteinian gravity also provide symmetries which, for the spin one half representation space, furnish a novel construct that carries extremely limited interactions with respect to the terrestrial detectors made of the standard model material. Both the "luminous" and "dark" matter turn out to be residents of the same representation space but they derive their respective "luminosity" and "darkness" from either belonging to the sector with (CPT)2 = +𝟙, or to the sector with (CPT)2 = -𝟙.


2016 ◽  
Vol 31 (06) ◽  
pp. 1630007 ◽  
Author(s):  
Steven Weinberg

I reminisce about the early development of effective field theories of the strong interactions, comment briefly on some other applications of effective field theories, and then take up the idea that the Standard Model and General Relativity are the leading terms in an effective field theory. Finally, I cite recent calculations that suggest that the effective field theory of gravitation and matter is asymptotically safe.


2018 ◽  
Vol 33 (10n11) ◽  
pp. 1830007 ◽  
Author(s):  
Agnieszka Ilnicka ◽  
Tania Robens ◽  
Tim Stefaniak

We give a brief overview of beyond the Standard Model (BSM) theories with an extended scalar sector and their phenomenological status in the light of recent experimental results. We discuss the relevant theoretical and experimental constraints, and show their impact on the allowed parameter space of two specific models: the real scalar singlet extension of the Standard Model (SM) and the Inert Doublet Model. We emphasize the importance of the LHC measurements, both the direct searches for additional scalar bosons, as well as the precise measurements of properties of the Higgs boson of mass 125 GeV. We show the complementarity of these measurements to electroweak and dark matter observables.


2019 ◽  
Vol 16 (09) ◽  
pp. 1950138
Author(s):  
A. Belfakir ◽  
A. belhaj ◽  
Y. El Maadi ◽  
S. E. Ennadifi ◽  
Y. Hassouni ◽  
...  

Using the toroidal compactification of string theory on [Formula: see text]-dimensional tori, [Formula: see text], we investigate dyonic objects in arbitrary dimensions. First, we present a class of dyonic black solutions formed by two different D-branes using a correspondence between toroidal cycles and objects possessing both magnetic and electric charges, belonging to [Formula: see text] dyonic gauge symmetry. This symmetry could be associated with electrically charged magnetic monopole solutions in stringy model buildings of the standard model (SM) extensions. Then, we consider in some detail such black hole classes obtained from even-dimensional toroidal compactifications, and we find that they are linked to [Formula: see text] Clifford algebras using the vee product. It is believed that this analysis could be extended to dyonic objects which can be obtained from local Calabi–Yau manifold compactifications.


Author(s):  
Maarten Boonekamp ◽  
Matthias Schott

With the huge success of quantum electrodynamics (QED) to describe electromagnetic interactions in nature, several attempts have been made to extend the concept of gauge theories to the other known fundamental interactions. It was realized in the late 1960s that electromagnetic and weak interactions can be described by a single unified gauge theory. In addition to the photon, the single mediator of the electromagnetic interaction, this theory predicted new, heavy particles responsible for the weak interaction, namely the W and the Z bosons. A scalar field, the Higgs field, was introduced to generate their mass. The discovery of the mediators of the weak interaction in 1983, at the European Center for Nuclear Research (CERN), marked a breakthrough in fundamental physics and opened the door to more precise tests of the Standard Model. Subsequent measurements of the weak boson properties allowed the mass of the top quark and of the Higgs Boson to be predicted before their discovery. Nowadays, these measurements are used to further probe the consistency of the Standard Model, and to place constrains on theories attempting to answer still open questions in physics, such as the presence of dark matter in the universe or unification of the electroweak and strong interactions with gravity.


Sign in / Sign up

Export Citation Format

Share Document