scalar singlet
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 20)

H-INDEX

22
(FIVE YEARS 5)

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Leonardo Coito ◽  
Carlos Faubel ◽  
Juan Herrero-García ◽  
Arcadi Santamaria

Abstract We study the case of a pseudo-scalar dark matter candidate which emerges from a complex scalar singlet, charged under a global U(1) symmetry, which is broken both explicitly and spontaneously. The pseudo-scalar is naturally stabilized by the presence of a remnant discrete symmetry: dark CP. We study and compare the phenomenology of several simplified models with only one explicit symmetry breaking term. We find that several regions of the parameter space are able to reproduce the observed dark matter abundance while respecting direct detection and invisible Higgs decay limits: in the resonances of the two scalars, featuring the known as forbidden or secluded dark matter, and through non-resonant Higgs-mediated annihilations. In some cases, combining different measurements would allow one to distinguish the breaking pattern of the symmetry. Moreover, this setup admits a light DM candidate at the sub-GeV scale. We also discuss the situation where more than one symmetry breaking term is present. In that case, the dark CP symmetry may be spontaneously broken, thus spoiling the stability of the dark matter candidate. Requiring that this does not happen imposes a constraint on the allowed parameter space. Finally, we consider an effective field theory approach valid in the pseudo-Nambu-Goldstone boson limit and when the U(1) breaking scale is much larger than the electroweak scale.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Jamal Ou Aali ◽  
Bouzid Manaut ◽  
Larbi Rahili ◽  
Souad Semlali

AbstractThe aim of this study is to investigate the quadratic divergences using dimensional regularization within the context of the Standard Model (SM) extended by two real scalar singlets (TRSM). This extension provides three neutral scalar fields that mix, after developing its VEVs, leading to three CP-even Higgs bosons, namely, $$h_1$$ h 1 , $$h_2$$ h 2 and $$h_3$$ h 3 , which would offer a wide phenomenology at the Large Hadron Collider (LHC), as reported recently. Furthermore, to fulfill the Veltman conditions for those three fields, we concentrate on the one-loop level ($$d_L=2$$ d L = 2 ) of dimensional regularization calculations, assuming $$R_{\xi }$$ R ξ Feynman–’t Hooft gauge-invariant, $$\xi =1$$ ξ = 1 . We show that the divergence cancellation could take place in the framework of the TRSM for the SM-like Higgs boson predicting a stringent constraint on the space parameters as well as the new physics (NP) scale, and yet remain consistent with current experimental measurements at 13 TeV.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Ankit Beniwal ◽  
Juan Herrero-García ◽  
Nicholas Leerdam ◽  
Martin White ◽  
Anthony G. Williams

Abstract The Scotogenic Model is one of the most minimal models to account for both neutrino masses and dark matter (DM). In this model, neutrino masses are generated at the one-loop level, and in principle, both the lightest fermion singlet and the lightest neutral component of the scalar doublet can be viable DM candidates. However, the correct DM relic abundance can only be obtained in somewhat small regions of the parameter space, as there are strong constraints stemming from lepton flavour violation, neutrino masses, electroweak precision tests and direct detection. For the case of scalar DM, a sufficiently large lepton-number-violating coupling is required, whereas for fermionic DM, coannihilations are typically necessary. In this work, we study how the new scalar singlet modifies the phenomenology of the Scotogenic Model, particularly in the case of scalar DM. We find that the new singlet modifies both the phenomenology of neutrino masses and scalar DM, and opens up a large portion of the parameter space of the original model.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Tobias Felkl ◽  
Juan Herrero-García ◽  
Michael A. Schmidt

Abstract We consider the generation of neutrino masses via a singly-charged scalar singlet. Under general assumptions we identify two distinct structures for the neutrino mass matrix. This yields a constraint for the antisymmetric Yukawa coupling of the singly-charged scalar singlet to two left-handed lepton doublets, irrespective of how the breaking of lepton-number conservation is achieved. The constraint disfavours large hierarchies among the Yukawa couplings. We study the implications for the phenomenology of lepton-flavour universality, measurements of the W-boson mass, flavour violation in the charged-lepton sector and decays of the singly-charged scalar singlet. We also discuss the parameter space that can address the Cabibbo Angle Anomaly.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Agnese Bissi ◽  
Andrea Manenti ◽  
Alessandro Vichi

Abstract We perform a numerical bootstrap study of the mixed correlator system containing the half-BPS operators of dimension two and three in $$ \mathcal{N} $$ N = 4 Super Yang-Mills. This setup improves on previous works in the literature that only considered single correlators of one or the other operator. We obtain upper bounds on the leading twist in a given representation of the R-symmetry by imposing gaps on the twist of all operators rather than the dimension of a single one. As a result we find a tension between the large N supergravity predictions and the numerical finite N results already at N∼ 100. A few possible solutions are discussed: the extremal spectrum suggests that at large but finite N, in addition to the double trace operators, there exists a second tower of states with smaller dimension. We also obtain new bounds on the dimension of operators which were not accessible with a single correlator setup. Finally we consider bounds on the OPE coefficients of various operators. The results obtained for the OPE coefficient of the lightest scalar singlet show evidences of a two dimensional conformal manifold.


2021 ◽  
Vol 103 (7) ◽  
Author(s):  
Andreas Crivellin ◽  
Fiona Kirk ◽  
Claudio Andrea Manzari ◽  
Luca Panizzi

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
D. M. Barreiros ◽  
F. R. Joaquim ◽  
R. Srivastava ◽  
J. W. F. Valle

Abstract We propose simple scoto-seesaw models to account for dark matter and neutrino masses with spontaneous CP violation. This is achieved with a single horizontal $$ {\mathcal{Z}}_8 $$ Z 8 discrete symmetry, broken to a residual $$ {\mathcal{Z}}_2 $$ Z 2 subgroup responsible for stabilizing dark matter. CP is broken spontaneously via the complex vacuum expectation value of a scalar singlet, inducing leptonic CP-violating effects. We find that the imposed $$ {\mathcal{Z}}_8 $$ Z 8 symmetry pushes the values of the Dirac CP phase and the lightest neutrino mass to ranges already probed by ongoing experiments, so that normal-ordered neutrino masses can be cornered by cosmological observations and neutrinoless double beta decay experiments.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Adil Jueid ◽  
Salah Nasri ◽  
Rachik Soualah

Abstract We suggest a minimal model for GeV-scale Majorana Dark Matter (DM) coupled to the standard model lepton sector via a charged scalar singlet. We show that there is an anti-correlation between the spin-independent DM-Nucleus scattering cross section (σSI) and the DM relic density for parameters values allowed by various theoretical and experimental constraints. Moreover, we find that even when DM couplings are of order unity, σSI is below the current experimental bound but above the neutrino floor. Furthermore, we show that the considered model can be probed at high energy lepton colliders using e.g. the mono-Higgs production and same-sign charged Higgs pair production.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Elina Fuchs ◽  
Oleksii Matsedonskyi ◽  
Inbar Savoray ◽  
Matthias Schlaffer

Abstract Spin-0 singlets arise in well-motivated extensions of the Standard Model. Their lifetime determines the best search strategies at hadron and lepton colliders. To cover a large range of singlet decay lengths, we investigate bounds from Higgs decays into a pair of singlets, considering signatures of invisible decays, displaced and delayed jets, and coupling fits of untagged decays. We examine the generic scalar singlet and the relaxion, and derive a matching as well as qualitative differences between them. For each model, we discuss its natural parameter space and the searches probing it.


Sign in / Sign up

Export Citation Format

Share Document