A Novel Low Power Technique for FinFET Domino OR Logic

Author(s):  
Kajal ◽  
Vijay Kumar Sharma

Excessive scaling of complementary metal oxide semiconductor (CMOS) technology is the main reason of large power dissipation in electronic circuits. Very large-scale integration (VLSI) industry has chosen an alternative option known as fin-shaped field effect transistor (FinFET) technology to mitigate the large power dissipation. FinFET is a multi-gate transistor which dissipates less leakage power as compared to CMOS transistors, but it does not completely resolve the problem of power dissipation. So, leakage reduction approaches are always required to mitigate the impact of power dissipation. In this paper, cascaded leakage control transistors (CLCT) leakage reduction technique is proposed using FinFET transistors. CLCT approach is tested for basic static logic circuits like inverter, 2-input NAND and NOR gates and compared with the existing leakage reduction techniques for leakage power dissipation and delay calculations at 16 and 14 nm technology nodes using Cadence tools. CLCT approach shows the effective reduction of leakage power with minimum delay penalty. As the domino logic gates are widely used in large memories and high-speed processors therefore, CLCT approach is further utilized for footless domino logic (FLDL) and compared with the available methods at 14[Formula: see text]nm technology node. CLCT approach reduces 35.16% power dissipation as compared to the conventional domino OR logic. Temperature and multiple parallel fin variations are estimated for the domino OR logic to check its reliable operation. CLCT approach has high-noise tolerance capability in term of unity noise gain (UNG) for domino OR logic as compared to the other methods.

Author(s):  
Vijay Kumar Sharma

Carbon nanotube field effect transistors (CNTFETs) are the best alternative option for the metal oxide semiconductor field effect transistor (MOSFET) in the ultra-deep submicron (ultra-DSM) regime. CNTFET has numerous benefits such as lower off-state current, high current density, low bias potential and better transport property as compared to MOSFET. A rolled graphene sheet-based cylindrical tube is constructed in the channel region of the CNTFET structure. In this paper, an improved domino logic (IDL) configuration is proposed for domino logic circuits to improve the different performance metrics. An extensive comparative simulation analysis is provided for the different performance metrics for different circuits to verify the novelty of the proposed IDL approach. The IDL approach saves the leakage power dissipation by 95.61% and enhances the speed by 87.10% for the 4-bit full adder circuit as compared to the best reported available domino method. The effects of the number of carbon nanotubes (CNTs), temperature, and power supply voltage variations are estimated for leakage power dissipation for the 16-input OR (OR16) gate. The reliability of different performance metrics for different circuit is calculated in terms of uncertainty by running the Monte Carlo simulations for 500 samples. Stanford University’s 32[Formula: see text]nm CNTFET model is applied for circuit simulations.


2014 ◽  
Vol 23 (05) ◽  
pp. 1450061 ◽  
Author(s):  
VIJAY KUMAR SHARMA ◽  
MANISHA PATTANAIK

Since the last two decades, the trend of device miniaturization has increased to get better performance with a smaller area of the logic functions. In deep submicron regime, the demand of fabrication of nanoscale Complementary metal oxide semiconductor (CMOS) VLSI circuits has increased due to evaluation of modern successful portable systems. Leakage power dissipation and reliability issues are major concerns in deep submicron regime for VLSI chip designers. Power supply voltage has been scaled down to maintain the performance yield in future deep submicron regime. The threshold voltage is the critical parameter to trade-off the performance yield and leakage power dissipation in nanoscaled devices. Low threshold voltage improves the device characteristics with large leakage power in nanoscaled devices. Several leakage reduction techniques at different levels are used to mitigate the leakage power dissipation. Lower leakage power increases the reliability by reducing the cooling cost of the portable systems. In this article, we are presenting the explanatory general review of the commonly used leakage reduction techniques at circuit level. We have analyzed the NAND3 gate using HSPICE EDA tool for leakage power dissipation at different technology nodes in active as well as standby modes. Process, voltage and temperature effects are checked for reliability purpose. Our comparative results and discussion of different leakage reduction techniques are very useful to illustrate the effective technique in active and standby modes.


Author(s):  
James Alfred Walker ◽  
Richard Sinnott ◽  
Gordon Stewart ◽  
James A. Hilder ◽  
Andy M. Tyrrell

The project Meeting the Design Challenges of nano-CMOS Electronics ( http://www.nanocmos.ac.uk ) was funded by the Engineering and Physical Sciences Research Council to tackle the challenges facing the electronics industry caused by the decreasing scale of transistor devices, and the inherent variability that this exposes in devices and in the circuits and systems in which they are used. The project has developed a grid-based solution that supports the electronics design process, incorporating usage of large-scale high-performance computing (HPC) resources, data and metadata management and support for fine-grained security to protect commercially sensitive datasets. In this paper, we illustrate how the nano-CMOS (complementary metal oxide semiconductor) grid has been applied to optimize transistor dimensions within a standard cell library. The goal is to extract high-speed and low-power circuits which are more tolerant of the random fluctuations that will be prevalent in future technology nodes. Using statistically enhanced circuit simulation models based on three-dimensional atomistic device simulations, a genetic algorithm is presented that optimizes the device widths within a circuit using a multi-objective fitness function exploiting the nano-CMOS grid. The results show that the impact of threshold voltage variation can be reduced by optimizing transistor widths, and indicate that a similar method could be extended to the optimization of larger circuits.


Author(s):  
Peter Gloeckner ◽  
Klaus Dullenkopf ◽  
Michael Flouros

Operating conditions in high speed mainshaft ball bearings applied in new aircraft propulsion systems require enhanced bearing designs and materials. Rotational speeds, loads, demands on higher thrust capability, and reliability have increased continuously over the last years. A consequence of these increasing operating conditions are increased bearing temperatures. A state of the art jet engine high speed ball bearing has been modified with an oil channel in the outer diameter of the bearing. This oil channel provides direct cooling of the outer ring. Rig testing under typical flight conditions has been performed to investigate the cooling efficiency of the outer ring oil channel. In this paper the experimental results including bearing temperature distribution, power dissipation, bearing oil pumping and the impact on oil mass and parasitic power loss reduction are presented.


2021 ◽  
pp. 1-34
Author(s):  
YONGBO GE ◽  
YUEXIAO ZHU ◽  
WENQIANG ZHANG ◽  
XIAORAN KONG

We investigate the impact of the construction of large-scale high-speed railways (HSRs) on regional multidimensional poverty in China. We find that the opening of HSRs can reduce this poverty indicator. This association is robust to a series of checks. Regarding the mechanisms, the opening of HSRs can improve regional accessibility, enhance local tourism, increase labor mobility and promote human capital accumulation, which alleviates multidimensional poverty. Further research indicates the regional heterogeneity of the effect. This research supplements poverty alleviation theory from the perspective of public infrastructure and offers insight into how multidimensional poverty arises and how it can be alleviated.


Coatings ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 444 ◽  
Author(s):  
Hao Yang ◽  
Xiaojiang Li ◽  
Guodong Wang ◽  
Jianbang Zheng

Polycrystalline lead selenide material that is processed after a sensitization technology offers the additional physical effects of carrier recombination suppression and carrier transport manipulation, making it sufficiently sensitive to mid-infrared radiation at room temperature. Low-cost and large-scale integration with existing electronic platforms such as complementary metal–oxide–semiconductor (CMOS) technology and multi-pixel readout electronics enable a photodetector based on polycrystalline lead selenide coating to work in high-speed, low-cost, and low-power consumption applications. It also shows huge potential to compound with other materials or structures, such as the metasurface for novel optoelectronic devices and more marvelous properties. Here, we provide an overview and evaluation of the preparations, physical effects, properties, and potential applications, as well as the optoelectronic enhancement mechanism, of lead selenide polycrystalline coatings.


Author(s):  
Ting Yu ◽  
Tushar Chaitanya

MV (Medium Voltage) controller lineup electrical protection is crucial in protecting the equipment from large scale damage upon the occurrence of an electrical fault, reducing the time to restore power, thereby minimizing the impact to liquids pipelines operation. The paper discusses typical electrical failure modes that may occur in MV controller lineups, and demonstrates practical relaying engineering techniques that enable fast and effective fault clearing. Electrical faults in the MV controller lineup are often arcing type, commonly involve ground. Mitigating arc hazards in MV Class E2 controller lineups has traditionally been challenging without sacrificing the protection selectivity. As the paper demonstrates, a relaying scheme with the combined use of high-speed light-sensing and overcurrent detection will effectively mitigate the incident energy, while maintaining the protection selectivity for non-arcing overcurrent events. For new MV controller lineups, in addition to the “high-speed light detection and fault interruption”, zone-selective interlocking (ZSI) can also be a practical solution in improving relay protection speed, thus reduce the chance of severe arc flash occurrences. ZSI is particularly effective for fault occurrences on the line side of the phase CTs, busways or main incoming circuits. The ZSI scheme can be implemented on both Class E2 and circuit breaker (VCB) type MV controller lineups, however, with slightly different trip logic due to the limited fault clearing capability of the contactor. Although there are multiple contributing factors, the direct causes of electrical failures in MV controller lineup are commonly related to improper power cable installation and handling, potentially leading to premature insulation breakdown due mainly to the proximity effect and/or partial discharge. Inadequate cable separation and prolonged fault trip delay can increase the possibility of arcing fault occurrence. This can usually be mitigated through appropriate cable spacing, adequate conductor insulation, and optimized fault detection schemes. The paper provides overviews of the mechanisms of proximity effect and partial discharge propagation, and the modern relaying approaches for accurate fault type discrimination and facilitating fast fault interruption. Two case studies are provided in the paper as an aid in understanding the electrical fault mechanism originated from cable insulation failure, demonstrating the incident energy reduction before and after the implementation of high-speed light detection and fault interruption solutions on an existing MV controller lineup.


2019 ◽  
Vol 112 ◽  
pp. 02011
Author(s):  
Cristian-Gabriel Alionte ◽  
Daniel-Constantin Comeaga

The importance of renewable energy and especially of eolian systems is growing. For this reason, we propose the investigation of an important pollutant - the noise, which has become so important that European Commission and European Parliament introduced Directive 2002/49/CE relating to the assessment and management of environmental noise. So far, priority has been given to very large-scale systems connected to national energy systems, wind farms whose highly variable output power could be regulated by large power systems. Nowadays, with the development of small storage capacities, it is feasible to install small power wind turbines in cities of up to 10,000 inhabitants too. As a case study, we propose a simulation for a rural locality where individual wind units could be used. This specific case study is interesting because it provides a new perspective of the impact of noise on the quality of life when the use of this type of system is implemented on a large scale. This option, of distributed and small power wind turbine, can be implemented in the future as an alternative or an adding to the common systems.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Jing Zuo ◽  
Jianwu Dang ◽  
Min Lyu

In large-scale high-speed rail networks (HSRNs), the occurrence of occasional malfunctions or accidents is unavoidable. The key issue considered in this study is the optimal allocation of the maintenance costs, based on the stochastic risk assessment for HSRNs. Inspired by the theoretical risk evaluation methods in the complex network, three major factors, including the local effects, global effects, and component self-effects are considered in the process of assessing the impact on the network components (nodes or lines). By introducing the component failure occurrence probability, which is considered to be an exponential function changing with the component maintenance costs, a feasible stochastic risk assessment model of the HSRNs together with the component impact assessment is proposed that can better unify the impact assessment of both the high-speed rail stations and railways. An optimal allocation algorithm based on a Lagrangian relaxation approach is designed. Correspondingly, the optimal cost allocation scheme can be determined using the algorithm to eliminate the various HSRN risks under the given costs. Furthermore, a real-world case study of the HSRNs in eastern China is illustrated. Compared with the genetic algorithm, the simulation shows that the approach can solve the optimal cost allocation problem to more effectively reduce the risks of large-scale HSRNs in practice.


Sign in / Sign up

Export Citation Format

Share Document