Geometry of Legendrian knots
We study the extrinsic geometry of Legendrian knots in the standard tight contact structure on [Formula: see text] In particular, we show that the total curvature of a Legendrian knot [Formula: see text] in [Formula: see text] is bounded below by [Formula: see text] times, the total number of cusps in the front projection of [Formula: see text]. We also show that a Legendrian [Formula: see text]-torus knot has the total curvature bounded below by [Formula: see text] while that of the Legendrian knots [Formula: see text] is bounded below by [Formula: see text]. Furthermore, we find an explicit relation between the Thurston–Bennequin number of a Legendrian knot [Formula: see text] and the geometric self-linking number, the curvature and the torsion of the knot [Formula: see text].