scholarly journals A trace formula for vector-valued modular forms

2015 ◽  
Vol 17 (06) ◽  
pp. 1550069
Author(s):  
P. Bantay

We present a formula for vector-valued modular forms, expressing the value of the Hilbert-polynomial of the module of holomorphic forms evaluated at specific arguments in terms of traces of representation matrices, restricting the weight distribution of the free generators.

2016 ◽  
Vol 59 (1) ◽  
pp. 143-165
Author(s):  
NICOLE RAULF ◽  
OLIVER STEIN

AbstractWe present a ready to compute trace formula for Hecke operators on vector-valued modular forms of integral weight for SL2(ℤ) transforming under the Weil representation. As a corollary, we obtain a ready to compute dimension formula for the corresponding space of vector-valued cusp forms, which is more general than the dimension formulae previously published in the vector-valued setting.


2012 ◽  
Vol 12 (3) ◽  
pp. 571-634 ◽  
Author(s):  
Jens Funke ◽  
John Millson

AbstractIn our previous paper [J. Funke and J. Millson, Cycles with local coefficients for orthogonal groups and vector-valued Siegel modular forms, American J. Math. 128 (2006), 899–948], we established a correspondence between vector-valued holomorphic Siegel modular forms and cohomology with local coefficients for local symmetric spaces $X$ attached to real orthogonal groups of type $(p, q)$. This correspondence is realized using theta functions associated with explicitly constructed ‘special’ Schwartz forms. Furthermore, the theta functions give rise to generating series of certain ‘special cycles’ in $X$ with coefficients.In this paper, we study the boundary behaviour of these theta functions in the non-compact case and show that the theta functions extend to the Borel–Sere compactification $ \overline{X} $ of $X$. However, for the $ \mathbb{Q} $-split case for signature $(p, p)$, we have to construct and consider a slightly larger compactification, the ‘big’ Borel–Serre compactification. The restriction to each face of $ \overline{X} $ is again a theta series as in [J. Funke and J. Millson, loc. cit.], now for a smaller orthogonal group and a larger coefficient system.As an application we establish in certain cases the cohomological non-vanishing of the special (co)cycles when passing to an appropriate finite cover of $X$. In particular, the (co)homology groups in question do not vanish. We deduce as a consequence a sharp non-vanishing theorem for ${L}^{2} $-cohomology.


2020 ◽  
Vol 16 (05) ◽  
pp. 1111-1152
Author(s):  
Cameron Franc ◽  
Geoffrey Mason

This paper studies modular forms of rank four and level one. There are two possibilities for the isomorphism type of the space of modular forms that can arise from an irreducible representation of the modular group of rank four, and we describe when each case occurs for general choices of exponents for the [Formula: see text]-matrix. In the remaining sections we describe how to write down the corresponding differential equations satisfied by minimal weight forms, and how to use these minimal weight forms to describe the entire graded module of holomorphic modular forms. Unfortunately, the differential equations that arise can only be solved recursively in general. We conclude the paper by studying the cases of tensor products of two-dimensional representations, symmetric cubes of two-dimensional representations, and inductions of two-dimensional representations of the subgroup of the modular group of index two. In these cases, the differential equations satisfied by minimal weight forms can be solved exactly.


Author(s):  
B. Ramakrishnan ◽  
Brundaban Sahu

Using the relationship between Jacobi forms of half-integral weight and vector valued modular forms, we obtain the number of components which determine the given Jacobi form of indexp,p2orpq, wherepandqare odd primes.


Sign in / Sign up

Export Citation Format

Share Document