Quantum Feller semigroup in terms of quantum Bernoulli noises
Quantum Bernoulli noises (QBN) are the family of annihilation and creation operators acting on Bernoulli functionals, which satisfy a canonical anti-commutation relation in equal-time. In this paper, we aim to investigate quantum Feller semigroups in terms of QBN. We first investigate local structure of the algebra generated by identity operator and QBN. We then use our new results obtained here to construct a class of quantum Markov semigroups from QBN which enjoy Feller property. As an application of our results, we examine a special quantum Feller semigroup associated with QBN, when it reduced to a certain Abelian subalgebra, the semigroup gives rise to the semigroup generated by Ornstein–Uhlenbeck operator. Finally, we find a sufficient condition for the existence of faithful invariant states that are diagonal for the semigroup.