Algebraic construction of quasi-split algebraic tori
The main purpose of this work is to give a constructive proof for a particular case of the no-name lemma. Let [Formula: see text] be a finite group, [Formula: see text] a field that is equipped with a faithful [Formula: see text]-action, and [Formula: see text] a sign permutation [Formula: see text]-lattice (see the Introduction for the definition). Then [Formula: see text] acts naturally on the group algebra [Formula: see text] of [Formula: see text] over [Formula: see text], and hence also on the quotient field [Formula: see text]. A well-known variant of the no-name lemma asserts that the invariant sub-field [Formula: see text] is a purely transcendental extension of [Formula: see text]. In other words, there exist [Formula: see text] which are algebraically independent over [Formula: see text] such that [Formula: see text]. In this paper, we give an explicit construction of suitable elements [Formula: see text].