scholarly journals Dynamic Behaviors of Holling Type II Predator-Prey System with Mutual Interference and Impulses

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Hongli Li ◽  
Long Zhang ◽  
Zhidong Teng ◽  
Yaolin Jiang

A class of Holling type II predator-prey systems with mutual interference and impulses is presented. Sufficient conditions for the permanence, extinction, and global attractivity of system are obtained. The existence and uniqueness of positive periodic solution are also established. Numerical simulations are carried out to illustrate the theoretical results. Meanwhile, they indicate that dynamics of species are very sensitive with the period matching between species’ intrinsic disciplinarians and the perturbations from the variable environment. If the periods between individual growth and impulse perturbations match well, then the dynamics of species periodically change. If they mismatch each other, the dynamics differ from period to period until there is chaos.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Cong Zhang ◽  
Nan-jing Huang ◽  
Chuan-xian Deng

We consider a Leslie predator-prey system with mutual interference and feedback controls. For general nonautonomous case, by using differential inequality theory and constructing a suitable Lyapunov functional, we obtain some sufficient conditions which guarantee the permanence and the global attractivity of the system. For the periodic case, we obtain some sufficient conditions which guarantee the existence, uniqueness, and stability of a positive periodic solution.


2016 ◽  
Vol 10 (01) ◽  
pp. 1750010 ◽  
Author(s):  
Hong-Li Li ◽  
Long Zhang ◽  
Zhi-Dong Teng ◽  
Yao-Lin Jiang

In most models of population dynamics, diffusion between two patches is assumed to be either continuous or discrete. However, in the real world, it is often the case that diffusion occurs at certain moment every year, impulsive diffusion can provide a more suitable manner to model the actual dispersal (or migration) behaviors for many ecological species. In addition, it is generally recognized that some kinds of time delays are inevitable in population interactions. In view of these facts, a delayed predator–prey system with impulsive diffusion between two patches is proposed. By using comparison theorem of impulsive differential equation and some analysis techniques, criteria on the global attractivity of predator-extinction periodic solution are established, sufficient conditions for the permanence of system are obtained. Finally, numerical simulations are presented to illustrate our theoretical results.


2009 ◽  
Vol 02 (04) ◽  
pp. 419-442 ◽  
Author(s):  
FENGYAN ZHOU

A new non-autonomous predator-prey system with the effect of viruses on the prey is investigated. By using the method of coincidence degree, some sufficient conditions are obtained for the existence of a positive periodic solution. Moreover, with the help of an appropriately chosen Lyapunov function, the global attractivity of the positive periodic solution is discussed. In the end, a numerical simulation is used to illustrate the feasibility of our results.


2014 ◽  
Vol 07 (06) ◽  
pp. 1450071 ◽  
Author(s):  
Kai Wang ◽  
Yanling Zhu

In this paper, by utilizing the comparison theorem and constructing a suitable Lyapunov functional the predator–prey model with modified Leslie–Gower Holling-type II schemes and a deviating argument is studied. Some sufficient conditions are obtained for uniform persistence and global attractivity of positive periodic solutions for this model. Furthermore, an example shows that the obtained criteria are easily verifiable.


2017 ◽  
Vol 10 (01) ◽  
pp. 1750002
Author(s):  
Xiaolin Fan ◽  
Zhidong Teng ◽  
Ahmadjan Muhammadhaji

The dynamical properties of a stochastic non-autonomous ratio-dependent predator–prey system are studied by applying the theory of stochastic differential equations, Itô’s formula and the method of Lyapunov functions. First, the existence, the uniqueness and the positivity of the solution are discussed. Second the boundedness of the moments and the upper bounds for growth rates of prey and predator are studied. Moreover, the global attractivity of the system under some a weaker sufficient conditions are investigated. Finally, the theoretical results are confirmed by the special examples and the numerical simulations.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Zheyan Zhou

We propose a discrete multispecies cooperation and competition predator-prey systems. For general nonautonomous case, sufficient conditions which ensure the permanence and the global stability of the system are obtained; for periodic case, sufficient conditions which ensure the existence of a globally stable positive periodic solution of the system are obtained.


Filomat ◽  
2017 ◽  
Vol 31 (18) ◽  
pp. 5811-5825
Author(s):  
Xinhong Zhang

In this paper we study the global dynamics of stochastic predator-prey models with non constant mortality rate and Holling type II response. Concretely, we establish sufficient conditions for the extinction and persistence in the mean of autonomous stochastic model and obtain a critical value between them. Then by constructing appropriate Lyapunov functions, we prove that there is a nontrivial positive periodic solution to the non-autonomous stochastic model. Finally, numerical examples are introduced to illustrate the results developed.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yumin Wu ◽  
Fengde Chen ◽  
Caifeng Du

AbstractIn this paper, we consider a nonautonomous predator–prey model with Holling type II schemes and a prey refuge. By applying the comparison theorem of differential equations and constructing a suitable Lyapunov function, sufficient conditions that guarantee the permanence and global stability of the system are obtained. By applying the oscillation theory and the comparison theorem of differential equations, a set of sufficient conditions that guarantee the extinction of the predator of the system is obtained.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Yumin Wu ◽  
Fengde Chen ◽  
Wanlin Chen ◽  
Yuhua Lin

A nonautonomous discrete predator-prey system incorporating a prey refuge and Holling type II functional response is studied in this paper. A set of sufficient conditions which guarantee the persistence and global stability of the system are obtained, respectively. Our results show that if refuge is large enough then predator species will be driven to extinction due to the lack of enough food. Two examples together with their numerical simulations show the feasibility of the main results.


2009 ◽  
Vol 02 (02) ◽  
pp. 229-242 ◽  
Author(s):  
JIANWEN JIA ◽  
HUI CAO

In this paper, we introduce and study Holling type II functional response predator–prey system with digest delay and impulsive harvesting on the prey, which contains with periodically pulsed on the prey and time delay on the predator. We investigate the existence and global attractivity of the predator-extinction periodic solutions of the system. By using the theory on delay functional and impulsive differential equation, we obtain the sufficient condition with time delay and impulsive perturbations for the permanence of the system.


Sign in / Sign up

Export Citation Format

Share Document