scholarly journals The Scribble Complex PDZ Proteins in Immune Cell Polarities

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Dante Barreda ◽  
Luis H. Gutiérrez-González ◽  
Erasmo Martínez-Cordero ◽  
Carlos Cabello-Gutiérrez ◽  
Rommel Chacón-Salinas ◽  
...  

hScrib and hDlg belong to the PDZ family of proteins. Since the identification of these highly phylogenetically conserved scaffolds, an increasing amount of experiments has elucidated the roles of hScrib and hDlg in a variety of cell functions. Remarkably, their participation during the establishment of polarity in epithelial cells is well documented. Although the role of both proteins in the immune system is scantly known, it has become a growing field of investigation. Here, we summarize the interactions and functions of hScrib and hDlg1, which participate in diverse functions involving cell polarization in immune cells, and discuss their relevance in the immune cell biology. The fundamental role of hScrib and hDlg1 during the establishment of the immunological synapse, hence T cell activation, and the recently described role of hScrib in reactive oxygen species production in macrophages and of hDlg1 in cytokine production by dendritic cells highlight the importance of both proteins in immune cell biology. The expression of these proteins in other leukocytes can be anticipated and needs to be confirmed. Due to their multiple interaction domains, there is a wide range of possible interactions of hScrib and hDlg1 that remains to be explored in the immune system.

2020 ◽  
Vol 21 (17) ◽  
pp. 6118 ◽  
Author(s):  
Marianna Szczypka

Phosphodiesterase 7 (PDE7), a cAMP-specific PDE family, insensitive to rolipram, is present in many immune cells, including T lymphocytes. Two genes of PDE7 have been identified: PDE7A and PDE7B with three or four splice variants, respectively. Both PDE7A and PDE7B are expressed in T cells, and the predominant splice variant in these cells is PDE7A1. PDE7 is one of several PDE families that terminates biological functions of cAMP—a major regulating intracellular factor. However, the precise role of PDE7 in T cell activation and function is still ambiguous. Some authors reported its crucial role in T cell activation, while according to other studies PDE7 activity was not pivotal to T cells. Several studies showed that inhibition of PDE7 by its selective or dual PDE4/7 inhibitors suppresses T cell activity, and consequently T-mediated immune response. Taken together, it seems quite likely that simultaneous inhibition of PDE4 and PDE7 by dual PDE4/7 inhibitors or a combination of selective PDE4 and PDE7 remains the most interesting therapeutic target for the treatment of some immune-related disorders, such as autoimmune diseases, or selected respiratory diseases. An interesting direction of future studies could also be using a combination of selective PDE7 and PDE3 inhibitors.


2016 ◽  
Vol 213 (8) ◽  
pp. 1609-1625 ◽  
Author(s):  
Akiko Hashimoto-Tane ◽  
Machie Sakuma ◽  
Hiroshi Ike ◽  
Tadashi Yokosuka ◽  
Yayoi Kimura ◽  
...  

The immunological synapse (IS) formed at the interface between T cells and antigen-presenting cells represents a hallmark of initiation of acquired immunity. T cell activation is initiated at T cell receptor (TCR) microclusters (MCs), in which TCRs and signaling molecules assemble at the interface before IS formation. We found that each TCR-MC was transiently bordered by a ring structure made of integrin and focal adhesion molecules in the early phase of activation, which is similar in structure to the IS in microscale. The micro–adhesion ring is composed of LFA-1, focal adhesion molecules paxillin and Pyk2, and myosin II (MyoII) and is supported by F-actin core and MyoII activity through LFA-1 outside-in signals. The formation of the micro–adhesion ring was transient but especially sustained upon weak TCR stimulation to recruit linker for activation of T cells (LAT) and SLP76. Perturbation of the micro–adhesion ring induced impairment of TCR-MC development and resulted in impaired cellular signaling and cell functions. Thus, the synapse-like structure composed of the core TCR-MC and surrounding micro–adhesion ring is a critical structure for initial T cell activation through integrin outside-in signals.


2019 ◽  
Author(s):  
Eladio J. Márquez ◽  
Cheng-han Chung ◽  
Radu Marches ◽  
Robert J. Rossi ◽  
Djamel Nehar-Belaid ◽  
...  

AbstractDifferences in immune function and responses contribute to health- and life-span disparities between sexes. However, the role of sex in immune system aging is not well understood. Here, we characterize peripheral blood mononuclear cells from 172 healthy adults 22-93 years of age using ATAC-seq, RNA-seq, and flow-cytometry. These data reveal a shared epigenomic signature of aging including declining naïve T cell and increasing monocyte/cytotoxic cell functions. These changes were greater in magnitude in men and accompanied by a male-specific genomic decline in B-cell specific loci. Age-related epigenomic changes first spike around late-thirties with similar timing and magnitude between sexes, whereas the second spike is earlier and stronger in men. Unexpectedly, genomic differences between sexes increase after age 65, with men having higher innate and pro-inflammatory activity and lower adaptive activity. Impact of age and sex on immune cell genomes can be visualized at https://immune-aging.jax.org to provide insights into future studies.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4156-4156
Author(s):  
Andreas Burchert ◽  
Barbara Denecke ◽  
Tobias Haerle ◽  
Andreas Neubauer

Abstract CD82 belongs to the tetraspanin superfamily, members of which regulate multiple aspects of cell biology such as T-cell activation, proliferation, differentiation, and adhesion.We have previously shown expression of CD82 on hematopoietic progenitor cells. Here we were seeking to shed light on the functional role of CD82 in hematopoiesis. First, we found that CD82 expression is strongly associated with an erythroid committment as exclusively the CD82bright fraction but not the CD82medium or CD82dim fraction of CD34+ cells gave rise to erythroid colony forming units (CFU). In order to manipulate CD82 activity, we used as surrogate ligand, a previously described, CD82-activating monoclonal antibody (moAb), clone 50F11, to activate CD82 on hematopoietic precursors. We found that 50F11, but not another CD82 specific antibody clone, BL-2, specifically induced tyrosine phosphorylation of CD34+ cells. In Dexter-type long-term cultures (D-LTC) 50F11, and not IgG1 isotype control moAbs significantly inhibited myelopoiesis and the number of CD34+ clonogenic progenitors. Moreover, in long term culture initiating cell (LTC-IC) assays, 50F11as compared to isotype control antibodies substantially inhibited, but not entirely abolished, the number of 5 week-LTC-IC′s, indicating that CD82 activation inhibits progenitor - and stem cell proliferation or self renewal. Finally, plastic immobilized 50F11-antibodies caused a time-, and concentration dependent induction of adhesion of CD34+ cells, which was associated with the formation of F-actin and development of multipolar extensions. Finally, CD82 ligation by 50F11 caused a statistically significant down-regulation of the integrin CD49d (p=0,036) and CD62L (p=0,010). Together, it is shown that CD34+/CD82high cells characterize an erythroid committment implying a role for this tetraspanin in erythroid hematopoiesis. Activation of CD82 induces adhesion and negatively regulates proliferation of adult stem- and progenitor cells. This implicates a so far unknown role for CD82 in the regulation of early hematopoiesis.


2009 ◽  
Vol 1209 ◽  
Author(s):  
Keyue Shen ◽  
Michael C Milone ◽  
Michael L. Dustin ◽  
Lance Cameron Kam

AbstractT lymphocytes are a key regulatory component of the adaptive immune system. Understanding how the micro- and nano-scale details of the extracellular environment influence T cell activation may have wide impact on the use of T cells for therapeutic purposes. In this article, we examine how the micro- and nano-scale presentation of ligands to cell surface receptors, including microscale organization and nanoscale mobility, influences the activation of T cells. We extend these studies to include the role of cell-generated forces, and the rigidity of the microenvironment, on T cell activation. These approaches enable delivery of defined signals to T cells, a step toward understanding the cell-cell communication in the immune system, and developing micro/nano- and material- engineered systems for tailoring immune responses for adoptive T cell therapies.


2016 ◽  
Vol 213 (13) ◽  
pp. 2885-2896 ◽  
Author(s):  
Ludivine Baron ◽  
Anja Onerva Paatero ◽  
Jean-David Morel ◽  
Francis Impens ◽  
Laure Guenin-Macé ◽  
...  

Mycolactone, an immunosuppressive macrolide released by the human pathogen Mycobacterium ulcerans, was previously shown to impair Sec61-dependent protein translocation, but the underlying molecular mechanism was not identified. In this study, we show that mycolactone directly targets the α subunit of the Sec61 translocon to block the production of secreted and integral membrane proteins with high potency. We identify a single–amino acid mutation conferring resistance to mycolactone, which localizes its interaction site near the lumenal plug of Sec61α. Quantitative proteomics reveals that during T cell activation, mycolactone-mediated Sec61 blockade affects a selective subset of secretory proteins including key signal-transmitting receptors and adhesion molecules. Expression of mutant Sec61α in mycolactone-treated T cells rescued their homing potential and effector functions. Furthermore, when expressed in macrophages, the mycolactone-resistant mutant restored IFN-γ receptor–mediated antimicrobial responses. Thus, our data provide definitive genetic evidence that Sec61 is the host receptor mediating the diverse immunomodulatory effects of mycolactone and identify Sec61 as a novel regulator of immune cell functions.


2010 ◽  
Vol 10 ◽  
pp. 1450-1461 ◽  
Author(s):  
Haya Sarras ◽  
Solmaz Alizadeh Azami ◽  
J. Peter McPherson

BCLAF1 was originally identified as a protein that interacts with antiapoptotic members of the Bcl2 family. Initial studies indicated a role for this protein as an inducer of apoptosis and repressor of transcription. Subsequent studies have shown that BCLAF1 plays criticals roles in a wide range of processes that are not normally associated with actions of Bcl2 family members, including lung development, T-cell activation, and control of the lytic infection program of Kaposi's sarcoma–associated herpesvirus. Here, we provide an overview of findings from past studies that both support and challenge the role of BCLAF1 in cell death and transcriptional control. We also present recent findings from our laboratory and others indicating a role for BCLAF1 in post-transcriptional processes that impact mRNA metabolism, instead of a direct role for this protein in apoptosis or transcription.


2015 ◽  
Vol 26 (1) ◽  
pp. 43-54 ◽  
Author(s):  
Alexandre Chigaev ◽  
Yelena Smagley ◽  
Mark K. Haynes ◽  
Oleg Ursu ◽  
Cristian G. Bologa ◽  
...  

Lymphocyte function–associated antigen 1 (LFA-1, CD11a/CD18, αLβ2-integrin) and its ligands are essential for adhesion between T-cells and antigen-presenting cells, formation of the immunological synapse, and other immune cell interactions. LFA-1 function is regulated through conformational changes that include the modulation of ligand binding affinity and molecular extension. However, the relationship between molecular conformation and function is unclear. Here fluorescence resonance energy transfer (FRET) with new LFA-1–specific fluorescent probes showed that triggering of the pathway used for T-cell activation induced rapid unquenching of the FRET signal consistent with extension of the molecule. Analysis of the FRET quenching at rest revealed an unexpected result that can be interpreted as a previously unknown LFA-1 conformation.


2021 ◽  
Vol 218 (8) ◽  
Author(s):  
Bryan M. Rogers ◽  
Laura Smith ◽  
Zoltan Dezso ◽  
Xu Shi ◽  
Enrico DiGiammarino ◽  
...  

As indicated by its name, V-domain Ig suppressor of T cell activation (VISTA) is thought to serve primarily as an inhibitory protein that limits immune responses. VISTA antibodies can dampen the effects of several concomitantly elicited activation signals, including TCR and TLR activation, but it is currently unclear if VISTA agonism could singly affect immune cell biology. In this study, we discovered two novel VISTA antibodies and characterized their effects on human peripheral blood mononuclear cells by scRNA/CITE-seq. Both antibodies appeared to agonize VISTA in an Fc-functional manner to elicit transcriptional and functional changes in monocytes consistent with activation. We also used pentameric VISTA to identify Syndecan-2 and several heparan sulfate proteoglycan synthesis genes as novel regulators of VISTA interactions with monocytic cells, adding further evidence of bidirectional signaling. Together, our study highlights several novel aspects of VISTA biology that have yet to be uncovered in myeloid cells and serves as a foundation for future research.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2795-2795
Author(s):  
Rina M Mbofung ◽  
Alan M Williams ◽  
Ken Hayama ◽  
Yijia Pan ◽  
Brian Groff ◽  
...  

Abstract Allogeneic off-the-shelf cell therapies offer distinct advantages over conventional autologous cell therapies in terms of scaled manufacturing, on-demand availability and optimization of cellular starting material. A unique consideration in the use of allogeneic cell therapies is the potential for immune cell-mediated recognition of the allogeneic cell product by the patient's immune system. CAR T-cell therapies are commonly combined with conditioning chemotherapies that suppress a patient's immune system, creating a suitable window of activity to elicit clinical response. However, protracted lympho-conditioning also affects immune reconstitution and can negatively impact the rate of infection. Alternative approaches to prevent allorejection may therefore help to enhance the efficacy of the therapy while preserving the immune system of the patient. Elimination of cell-surface human leukocyte antigen (HLA) molecule expression by genetic knockout (KO) has long been known to abrogate T-cell reactivity. However, loss of class I HLA elicits NK cell-mediated recognition and clearance, and therefore must be combined with other immune-modulating strategies to limit host NK cell reactivity. Allogeneic models combining class I HLA deletion with NK cell inhibitory molecules, such as HLA-E and CD47, have been shown to abrogate NK cell reactivity in mouse models. However, HLA-E is the canonical activator of NKG2C, a dominant activating receptor found on human NK cells. Likewise, the expression of signal regulatory protein alpha (SIRPα), the major interactor for CD47, is mostly restricted to macrophages and dendritic cells and not human NK cells, and the observed effects of this immune-modulating strategy in the mouse system may only offer partial or incomplete immune evasion in the human system. In this study, we provide details of a bona fide off-the-shelf strategy where iPSC-derived NK (iNK) cell therapy is multiplexed engineered with a novel combination of immune-evasion modalities; beta 2 microgobulin (B2M) KO to prevent CD8 T-cell mediated rejection; class II transactivator (CIITA) KO to prevent CD4 T-cell mediated rejection; and CD38 KO to enable combination with anti-CD38 mAbs, which can be administered to deplete host alloreactive lymphocytes, including both NK and T cells. In vitro mixed lymphocyte reaction (MLR) data demonstrated that upon co-culture with allogeneic PBMCs, B2M KO iNK cells stimulated less T-cell activation than their B2M sufficient counterparts as evidenced by reduced CD38, 41BB, and CD25 levels on T cells. Additionally, B2M KO iNK cells impaired T-cell expansion over the duration of co-culture, resulting in a 50% decrease in expansion at the peak of the control response. However, B2M KO iNK cells were depleted over time, suggesting activation of an NK cell "missing self" response by the peripheral blood NK (pbNK) cells. In contrast, when the assay was performed in the presence of anti-CD38 mAb, depletion of B2M KO iNK cells was blocked, and instead B2M KO iNK cell numbers increased by 3.5-fold, comparable to the iNK cell numbers found in the control arm (cultured without allogeneic PBMCs). Interestingly, pbNK cell numbers decreased, while T-cell activation and expansion remained lower than in B2M-sufficient MLR cultures. Furthermore, when B2M KO iNK cells were cocultured with tumor cells and anti-CD38 mAb in vitro, ADCC was comparable to the B2M sufficient cells, indicating uncompromised effector function. Finally, in vivo studies suggested that co-administration of anti-CD38 mAbs can significantly enhance the persistence of B2M KO iNK cells in the presence of allogeneic pbNK cells as seen in the spleen and bone marrow (Figure 1). Together these data demonstrate that the combination of triple-gene knockout of CD38, B2M and CIITA with a CD38-targeting mAb is an effective strategy to avoid host immune rejection, and highlights the potential advantages of multiplexed engineered iPSCs to facilitate large-scale manufacture of complex engineered, off-the-shelf cellular therapies. Figure 1 Figure 1. Disclosures Williams: Fate Therapeutics: Current Employment. Malmberg: Merck: Research Funding; Vycellix: Consultancy; Fate Therapeutics: Consultancy, Research Funding. Lee: Fate Therapeutics, Inc.: Current Employment. Bjordahl: Fate Therapeutics: Current Employment. Valamehr: Fate Therapeutics, Inc.: Current Employment.


Sign in / Sign up

Export Citation Format

Share Document