scholarly journals Bayesian Estimation of Archimedean Copula-Based SUR Quantile Models

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Nachatchapong Kaewsompong ◽  
Paravee Maneejuk ◽  
Woraphon Yamaka

We propose a high-dimensional copula to model the dependence structure of the seemingly unrelated quantile regression. As the conventional model faces with the strong assumption of the multivariate normal distribution and the linear dependence structure, thus, we apply the multivariate exchangeable copula function to relax this assumption. As there are many parameters to be estimated, we consider the Bayesian Markov chain Monte Carlo approach to estimate the parameter interests in the model. Four simulation studies are conducted to assess the performance of our proposed model and Bayesian estimation. Satisfactory results from simulation studies are obtained suggesting the good performance and reliability of the Bayesian method used in our proposed model. The real data analysis is also provided, and the empirical comparison indicates our proposed model outperforms the conventional models in all considered quantile levels.

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Huibing Hao ◽  
Chun Su

A novel reliability assessment method for degradation product with two dependent performance characteristics (PCs) is proposed, which is different from existing work that only utilized one dimensional degradation data. In this model, the dependence of two PCs is described by the Frank copula function, and each PC is governed by a random effected nonlinear diffusion process where random effects capture the unit to unit differences. Considering that the model is so complicated and analytically intractable, Markov Chain Monte Carlo (MCMC) method is used to estimate the unknown parameters. A numerical example about LED lamp is given to demonstrate the usefulness and validity of the proposed model and method. Numerical results show that the random effected nonlinear diffusion model is very useful by checking the goodness of fit of the real data, and ignoring the dependence between PCs may result in different reliability conclusion.


Author(s):  
Yicheng Zhou ◽  
Zhenzhou Lu ◽  
Yan Shi ◽  
Kai Cheng

Competing risk usually exists in engineering applications; thus, the study of the statistical inference of accelerated life testing with competing failure modes is of great significance. In this article, we address the statistical analysis of a step-stress accelerated life test in the presence of dependent competing failure modes. The dependence structure among distributions of lifetimes is constructed by copula function with unknown copula parameter. The parametric maximum likelihood estimation is developed to obtain the estimates of underlying parameters. The asymptotic standard errors and asymptotic confidence interval of estimates are also obtained by missing information principle. An extensive simulation study and a real data analysis are carried out to observe the performance of the proposed method. The results of the case studies show that our proposed method is valid and effective for the statistical analysis of step-stress accelerated life test with dependent competing failure modes.


2019 ◽  
Vol 8 (2) ◽  
pp. 70 ◽  
Author(s):  
Mustafa C. Korkmaz ◽  
Emrah Altun ◽  
Haitham M. Yousof ◽  
G.G. Hamedani

In this study, a new flexible family of distributions is proposed with its statistical properties as well as some useful characterizations. The maximum likelihood method is used to estimate the unknown model parameters by means of two simulation studies. A new regression model is proposed based on a special member of the proposed family called, the log odd power Lindley Weibull distribution. Residual analysis is conducted to evaluate the model assumptions. Four applications to real data sets are given to demonstrate the usefulness of the proposed model.


Author(s):  
Olga Mikhaylovna Tikhonova ◽  
Alexander Fedorovich Rezchikov ◽  
Vladimir Andreevich Ivashchenko ◽  
Vadim Alekseevich Kushnikov

The paper presents the system of predicting the indicators of accreditation of technical universities based on J. Forrester mechanism of system dynamics. According to analysis of cause-and-effect relationships between selected variables of the system (indicators of accreditation of the university) there was built the oriented graph. The complex of mathematical models developed to control the quality of training engineers in Russian higher educational institutions is based on this graph. The article presents an algorithm for constructing a model using one of the simulated variables as an example. The model is a system of non-linear differential equations, the modelling characteristics of the educational process being determined according to the solution of this system. The proposed algorithm for calculating these indicators is based on the system dynamics model and the regression model. The mathematical model is constructed on the basis of the model of system dynamics, which is further tested for compliance with real data using the regression model. The regression model is built on the available statistical data accumulated during the period of the university's work. The proposed approach is aimed at solving complex problems of managing the educational process in universities. The structure of the proposed model repeats the structure of cause-effect relationships in the system, and also provides the person responsible for managing quality control with the ability to quickly and adequately assess the performance of the system.


2019 ◽  
Vol XVI (2) ◽  
pp. 1-11
Author(s):  
Farrukh Jamal ◽  
Hesham Mohammed Reyad ◽  
Soha Othman Ahmed ◽  
Muhammad Akbar Ali Shah ◽  
Emrah Altun

A new three-parameter continuous model called the exponentiated half-logistic Lomax distribution is introduced in this paper. Basic mathematical properties for the proposed model were investigated which include raw and incomplete moments, skewness, kurtosis, generating functions, Rényi entropy, Lorenz, Bonferroni and Zenga curves, probability weighted moment, stress strength model, order statistics, and record statistics. The model parameters were estimated by using the maximum likelihood criterion and the behaviours of these estimates were examined by conducting a simulation study. The applicability of the new model is illustrated by applying it on a real data set.


Author(s):  
Guanghao Qi ◽  
Nilanjan Chatterjee

Abstract Background Previous studies have often evaluated methods for Mendelian randomization (MR) analysis based on simulations that do not adequately reflect the data-generating mechanisms in genome-wide association studies (GWAS) and there are often discrepancies in the performance of MR methods in simulations and real data sets. Methods We use a simulation framework that generates data on full GWAS for two traits under a realistic model for effect-size distribution coherent with the heritability, co-heritability and polygenicity typically observed for complex traits. We further use recent data generated from GWAS of 38 biomarkers in the UK Biobank and performed down sampling to investigate trends in estimates of causal effects of these biomarkers on the risk of type 2 diabetes (T2D). Results Simulation studies show that weighted mode and MRMix are the only two methods that maintain the correct type I error rate in a diverse set of scenarios. Between the two methods, MRMix tends to be more powerful for larger GWAS whereas the opposite is true for smaller sample sizes. Among the other methods, random-effect IVW (inverse-variance weighted method), MR-Robust and MR-RAPS (robust adjust profile score) tend to perform best in maintaining a low mean-squared error when the InSIDE assumption is satisfied, but can produce large bias when InSIDE is violated. In real-data analysis, some biomarkers showed major heterogeneity in estimates of their causal effects on the risk of T2D across the different methods and estimates from many methods trended in one direction with increasing sample size with patterns similar to those observed in simulation studies. Conclusion The relative performance of different MR methods depends heavily on the sample sizes of the underlying GWAS, the proportion of valid instruments and the validity of the InSIDE assumption. Down-sampling analysis can be used in large GWAS for the possible detection of bias in the MR methods.


2021 ◽  
Vol 10 (s1) ◽  
Author(s):  
Said Gounane ◽  
Yassir Barkouch ◽  
Abdelghafour Atlas ◽  
Mostafa Bendahmane ◽  
Fahd Karami ◽  
...  

Abstract Recently, various mathematical models have been proposed to model COVID-19 outbreak. These models are an effective tool to study the mechanisms of coronavirus spreading and to predict the future course of COVID-19 disease. They are also used to evaluate strategies to control this pandemic. Generally, SIR compartmental models are appropriate for understanding and predicting the dynamics of infectious diseases like COVID-19. The classical SIR model is initially introduced by Kermack and McKendrick (cf. (Anderson, R. M. 1991. “Discussion: the Kermack–McKendrick Epidemic Threshold Theorem.” Bulletin of Mathematical Biology 53 (1): 3–32; Kermack, W. O., and A. G. McKendrick. 1927. “A Contribution to the Mathematical Theory of Epidemics.” Proceedings of the Royal Society 115 (772): 700–21)) to describe the evolution of the susceptible, infected and recovered compartment. Focused on the impact of public policies designed to contain this pandemic, we develop a new nonlinear SIR epidemic problem modeling the spreading of coronavirus under the effect of a social distancing induced by the government measures to stop coronavirus spreading. To find the parameters adopted for each country (for e.g. Germany, Spain, Italy, France, Algeria and Morocco) we fit the proposed model with respect to the actual real data. We also evaluate the government measures in each country with respect to the evolution of the pandemic. Our numerical simulations can be used to provide an effective tool for predicting the spread of the disease.


2020 ◽  
Vol 70 (4) ◽  
pp. 953-978
Author(s):  
Mustafa Ç. Korkmaz ◽  
G. G. Hamedani

AbstractThis paper proposes a new extended Lindley distribution, which has a more flexible density and hazard rate shapes than the Lindley and Power Lindley distributions, based on the mixture distribution structure in order to model with new distribution characteristics real data phenomena. Its some distributional properties such as the shapes, moments, quantile function, Bonferonni and Lorenz curves, mean deviations and order statistics have been obtained. Characterizations based on two truncated moments, conditional expectation as well as in terms of the hazard function are presented. Different estimation procedures have been employed to estimate the unknown parameters and their performances are compared via Monte Carlo simulations. The flexibility and importance of the proposed model are illustrated by two real data sets.


Author(s):  
Moritz Berger ◽  
Gerhard Tutz

AbstractA flexible semiparametric class of models is introduced that offers an alternative to classical regression models for count data as the Poisson and Negative Binomial model, as well as to more general models accounting for excess zeros that are also based on fixed distributional assumptions. The model allows that the data itself determine the distribution of the response variable, but, in its basic form, uses a parametric term that specifies the effect of explanatory variables. In addition, an extended version is considered, in which the effects of covariates are specified nonparametrically. The proposed model and traditional models are compared in simulations and by utilizing several real data applications from the area of health and social science.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1815
Author(s):  
Diego I. Gallardo ◽  
Mário de Castro ◽  
Héctor W. Gómez

A cure rate model under the competing risks setup is proposed. For the number of competing causes related to the occurrence of the event of interest, we posit the one-parameter Bell distribution, which accommodates overdispersed counts. The model is parameterized in the cure rate, which is linked to covariates. Parameter estimation is based on the maximum likelihood method. Estimates are computed via the EM algorithm. In order to compare different models, a selection criterion for non-nested models is implemented. Results from simulation studies indicate that the estimation method and the model selection criterion have a good performance. A dataset on melanoma is analyzed using the proposed model as well as some models from the literature.


Sign in / Sign up

Export Citation Format

Share Document