scholarly journals The Existence of Strong Solution for Generalized Navier-Stokes Equations with p x -Power Law under Dirichlet Boundary Conditions

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Cholmin Sin

In this note, in 2D and 3D smooth bounded domain, we show the existence of strong solution for generalized Navier-Stokes equation modeling by p x -power law with Dirichlet boundary condition under the restriction 3 n / n + 2 n + 2 < p x < 2 n + 1 / n − 1 . In particular, if we neglect the convective term, we get a unique strong solution of the problem under the restriction 2 n + 1 / n + 3 < p x < 2 n + 1 / n − 1 , which arises from the nonflatness of domain.

Author(s):  
Joel D. Avrin

We obtain global existence and regularity of strong solutions to the incompressible Navier–Stokes equations for a variety of boundary conditions in such a way that the initial and forcing data can be large in the high-frequency eigenspaces of the Stokes operator. We do not require that the domain be thin as in previous analyses. But in the case of thin domains (and zero Dirichlet boundary conditions) our results represent a further improvement and refinement of previous results obtained.


2014 ◽  
Vol 15 (01) ◽  
pp. 1450012 ◽  
Author(s):  
Ana Bela Cruzeiro ◽  
Iván Torrecilla

We prove weak existence of Euler equation (or Navier–Stokes equation) perturbed by a multiplicative noise on bounded domains of ℝ2 with Dirichlet boundary conditions and with periodic boundary conditions. Solutions are H1 regular. The equations are of transport type.


2018 ◽  
Vol 28 (14) ◽  
pp. 2719-2762 ◽  
Author(s):  
Gabriel N. Gatica ◽  
Mauricio Munar ◽  
Filánder A. Sequeira

A mixed virtual element method (mixed-VEM) for a pseudostress-velocity formulation of the two-dimensional Navier–Stokes equations with Dirichlet boundary conditions is proposed and analyzed in this work. More precisely, we employ a dual-mixed approach based on the introduction of a nonlinear pseudostress linking the usual linear one for the Stokes equations and the convective term. In this way, the aforementioned new tensor together with the velocity constitute the only unknowns of the problem, whereas the pressure is computed via a postprocessing formula. In addition, the resulting continuous scheme is augmented with Galerkin type terms arising from the constitutive and equilibrium equations, and the Dirichlet boundary condition, all them multiplied by suitable stabilization parameters, so that the Banach fixed-point and Lax–Milgram theorems are applied to conclude the well-posedness of the continuous and discrete formulations. Next, we describe the main VEM ingredients that are required for our discrete analysis, which, besides projectors commonly utilized for related models, include, as the main novelty, the simultaneous use of virtual element subspaces for [Formula: see text] and [Formula: see text] in order to approximate the velocity and the pseudostress, respectively. Then, the discrete bilinear and trilinear forms involved, their main properties and the associated mixed virtual scheme are defined, and the corresponding solvability analysis is performed using again appropriate fixed-point arguments. Moreover, Strang-type estimates are applied to derive the a priori error estimates for the two components of the virtual element solution as well as for the fully computable projections of them and the postprocessed pressure. As a consequence, the corresponding rates of convergence are also established. Finally, we follow the same approach employed in previous works by some of the authors and introduce an element-by-element postprocessing formula for the fully computable pseudostress, thus yielding an optimally convergent approximation of this unknown with respect to the broken [Formula: see text]-norm.


2020 ◽  
Vol 22 (2) ◽  
Author(s):  
Zdzisław Brzeźniak ◽  
Gaurav Dhariwal

Abstract Röckner and Zhang (Probab Theory Relat Fields 145, 211–267, 2009) proved the existence of a unique strong solution to a stochastic tamed 3D Navier–Stokes equation in the whole space and for the periodic boundary case using a result from Stroock and Varadhan (Multidimensional diffusion processes, Springer, Berlin, 1979). In the latter case, they also proved the existence of an invariant measure. In this paper, we improve their results (but for a slightly simplified system) using a self-contained approach. In particular, we generalise their result about an estimate on the $$L^4$$ L 4 -norm of the solution from the torus to $${\mathbb {R}}^3$$ R 3 , see Lemma 5.1 and thus establish the existence of an invariant measure on $${\mathbb {R}}^3$$ R 3 for a time-homogeneous damped tamed 3D Navier–Stokes equation, given by (6.1).


2012 ◽  
Vol 4 (2) ◽  
pp. 223-237 ◽  
Author(s):  
Jinping Jiang ◽  
Yanren Hou ◽  
Xiaoxia Wang

AbstractThe pullback asymptotic behavior of the solutions for 2D Nonau-tonomousG-Navier-Stokes equations is studied, and the existence of itsL2-pullback attractors on some bounded domains with Dirichlet boundary conditions is investigated by using the measure of noncompactness. Then the estimation of the fractal dimensions for the 2DG-Navier-Stokes equations is given.


2020 ◽  
Vol 65 (6) ◽  
pp. 23-30
Author(s):  
Thinh Tran Quang ◽  
Thuy Le Thi

We consider the 2D g-Bénard problem in domains satisfying the Poincaré inequality with homogeneous Dirichlet boundary conditions. We prove the existence and uniqueness of global weak solutions. The obtained results particularly extend previous results for 2D g-Navier-Stokes equations and 2D Bénard problem.


Author(s):  
VIOREL BARBU ◽  
GIUSEPPE DA PRATO ◽  
ARNAUD DEBUSSCHE

We consider a 2D Navier–Stokes equation with Dirichlet boundary conditions perturbed by a stochastic term of the form [Formula: see text], where Q is a non-negative operator and Ẇ is a spacetime white noise. We solve the corresponding Kolmogorov equation in the space L2(H,ν) where ν is an invariant measure and prove the "carré du champs" identity. The key tool are some sharp estimates on the derivatives of the solution. Our main assumption is that the viscosity is large compared with the norm of Q. As a byproduct, we give a new simple proof of the uniqueness of the invariant measure and obtain an existence result for a Hamilton–Jacobi equation related to a control problem.


Sign in / Sign up

Export Citation Format

Share Document