scholarly journals Convergence theorems of the sequence of iterates for a finite family asymptotically nonexpansive mappings

2001 ◽  
Vol 27 (11) ◽  
pp. 653-662 ◽  
Author(s):  
Jui-Chi Huang

LetEbe a uniformly convex Banach space,Ca nonempty closed convex subset ofE. In this paper, we introduce an iteration scheme with errors in the sense of Xu (1998) generated by{Tj:C→C}j=1ras follows:Un(j)=an(j)I+bn(j)TjnUn(j−1)+cn(j)un(j),j=1,2,…,r,x1∈C,xn+1=an(r)xn+bn(r)TrnUn(r−1)xn+cn(r)un(r),n≥1, whereUn(0):=I,Ithe identity map; and{un(j)}are bounded sequences inC; and{an(j)},{bn(j)}, and{cn(j)}are suitable sequences in[0,1]. We first consider the behaviour of iteration scheme above for a finite family of asymptotically nonexpansive mappings. Then we generalize theorems of Schu and Rhoades.

2004 ◽  
Vol 11 (1) ◽  
pp. 83-92
Author(s):  
Jui-Chi Huang

Abstract Let 𝐸 be a uniformly convex Banach space which satisfies Opial's condition or its dual 𝐸* has the Kadec–Klee property, 𝐶 a nonempty closed convex subset of 𝐸, and 𝑇𝑗 : 𝐶 → 𝐶 an asymptotically nonexpansive mapping for each 𝑗 = 1, 2, . . . , 𝑟. Suppose {𝑥𝑛} is generated iteratively by where 𝑈𝑛(0) = 𝐼, 𝐼 is the identity map and {α 𝑛(𝑗)} is a suitable sequence in [0, 1]. If the set of common fixed points of is nonempty, then weak convergence of {𝑥𝑛} to some is obtained.


1999 ◽  
Vol 22 (1) ◽  
pp. 217-220
Author(s):  
B. K. Sharma ◽  
B. S. Thakur ◽  
Y. J. Cho

In this paper, we prove a convergence theorem for Passty type asymptotically nonexpansive mappings in a uniformly convex Banach space with Fréchet-differentiable norm.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Jinzuo Chen ◽  
Dingping Wu ◽  
Caifen Zhang

We introduce the modified iterations of Mann's type for nonexpansive mappings and asymptotically nonexpansive mappings to have the strong convergence in a uniformly convex Banach space. We study approximation of common fixed point of asymptotically nonexpansive mappings in Banach space by using a new iterative scheme. Applications to the accretive operators are also included.


1991 ◽  
Vol 43 (1) ◽  
pp. 153-159 ◽  
Author(s):  
J. Schu

Let T be an asymptotically nonexpansive self-mapping of a closed bounded and convex subset of a uniformly convex Banach space which satisfies Opial's condition. It is shown that, under certain assumptions, the sequence given by xn+1 = αnTn(xn) + (1 - αn)xn converges weakly to some fixed point of T. In arbitrary uniformly convex Banach spaces similar results are obtained concerning the strong convergence of (xn) to a fixed point of T, provided T possesses a compact iterate or satisfies a Frum-Ketkov condition of the fourth kind.


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Farrukh Mukhamedov ◽  
Mansoor Saburov

We unify all known iterative methods by introducing a new explicit iterative scheme for approximation of common fixed points of finite families of total asymptoticallyI-nonexpansive mappings. Note that such a scheme contains a particular case of the method introduced by (C. E. Chidume and E. U. Ofoedu, 2009). We construct examples of total asymptotically nonexpansive mappings which are not asymptotically nonexpansive. Note that no such kind of examples were known in the literature. We prove the strong convergence theorems for such iterative process to a common fixed point of the finite family of total asymptoticallyI-nonexpansive and total asymptotically nonexpansive mappings, defined on a nonempty closed-convex subset of uniformly convex Banach spaces. Moreover, our results extend and unify all known results.


2017 ◽  
Vol 33 (3) ◽  
pp. 327-334
Author(s):  
ABDUL RAHIM KHAN ◽  
◽  
HAFIZ FUKHAR-UD-DIN ◽  
NUSRAT YASMIN ◽  
◽  
...  

In the context of a hyperbolic space, we introduce and study convergence of an implicit iterative scheme of a finite family of asymptotically nonexpansive mappings without convergence condition. The results presented substantially improve and extend several well-known resullts in uniformly convex Banach spaces.


2011 ◽  
Vol 2011 ◽  
pp. 1-19
Author(s):  
Tanakit Thianwan

We study weak convergence of the projection type Ishikawa iteration scheme for two asymptotically nonexpansive nonself-mappings in a real uniformly convex Banach spaceEwhich has a Fréchet differentiable norm or its dualE*has the Kadec-Klee property. Moreover, weak convergence of projection type Ishikawa iterates of two asymptotically nonexpansive nonself-mappings without any condition on the rate of convergence associated with the two maps in a uniformly convex Banach space is established. Weak convergence theorem without making use of any of the Opial's condition, Kadec-Klee property, or Fréchet differentiable norm is proved. Some results have been obtained which generalize and unify many important known results in recent literature.


2005 ◽  
Vol 2005 (11) ◽  
pp. 1685-1692 ◽  
Author(s):  
Somyot Plubtieng ◽  
Rabian Wangkeeree

Suppose thatCis a nonempty closed convex subset of a real uniformly convex Banach spaceX. LetT:C→Cbe an asymptotically quasi-nonexpansive mapping. In this paper, we introduce the three-step iterative scheme for such map with error members. Moreover, we prove that ifTis uniformlyL-Lipschitzian and completely continuous, then the iterative scheme converges strongly to some fixed point ofT.


2005 ◽  
Vol 2005 (10) ◽  
pp. 1643-1653 ◽  
Author(s):  
Hafiz Fukhar-Ud-Din ◽  
Abdul Rahim Khan

We prove that an implicit iterative process with errors converges weakly and strongly to a common fixed point of a finite family of asymptotically quasi-nonexpansive mappings on unbounded sets in a uniformly convex Banach space. Our results generalize and improve upon, among others, the corresponding recent results of Sun (2003) in the following two different directions: (i) domain of the mappings is unbounded, (ii) the iterative sequence contains an error term.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Qiansheng Feng ◽  
Yongfu Su ◽  
Fangfang Yan

Saewan and Kumam (2010) have proved the convergence theorems for finding the set of solutions of a general equilibrium problems and the common fixed point set of a family of closed and uniformly quasi--asymptotically nonexpansive mappings in a uniformly smooth and strictly convex Banach spaceEwith Kadec-Klee property. In this paper, authors prove the convergence theorems and do not need the Kadec-Klee property of Banach space and some other conditions used in the paper of S. Saewan and P. Kumam. Therefore, the results presented in this paper improve and extend some recent results.


Sign in / Sign up

Export Citation Format

Share Document