scholarly journals Microscopy images segmentation algorithm based on shearlet neural network

2021 ◽  
Vol 10 (2) ◽  
pp. 724-731
Author(s):  
Nemir Ahmed Al-Azzawi

Microscopic images are becoming important and need to be studied to know the details and how-to quantitatively evaluate decellularization. Most of the existing research focuses on deep learning-based techniques that lack simplification for decellularization. A new computational method for the segmentation microscopy images based on the shearlet neural network (SNN) has been introduced. The proposal is to link the concept of shearlets transform and neural networks into a single unit. The method contains a feed-forward neural network and uses a single hidden layer. The activation functions are depending on the standard shearlet transform. The proposed SNN is a powerful technology for segmenting an electron microscopic image that is trained without relying on the pre-information of the data. The shearlet neural networks capture the features of full accuracy and contextual information, respectively. The expected value for specific inputs is estimated by learning the functional configuration of a network for the sequence of observed value. Experimental results on the segmentation of two-dimensional microscopy images are promising and confirm the benefits of the proposed approach. Lastly, we investigate on a challenging datasets ISBI 2012 that our method (SNN) achieves superior outcomes when compared to classical and deep learning-based methods.

Author(s):  
Zahra A. Shirazi ◽  
Camila P. E. de Souza ◽  
Rasha Kashef ◽  
Felipe F. Rodrigues

Artificial Neural networks (ANN) are composed of nodes that are joint to each other through weighted connections. Deep learning, as an extension of ANN, is a neural network model, but composed of different categories of layers: input layer, hidden layers, and output layers. Input data is fed into the first (input) layer. But the main process of the neural network models is done within the hidden layers, ranging from a single hidden layer to multiple ones. Depending on the type of model, the structure of the hidden layers is different. Depending on the type of input data, different models are applied. For example, for image data, convolutional neural networks are the most appropriate. On the other hand, for text or sequential and time series data, recurrent neural networks or long short-term memory models are the better choices. This chapter summarizes the state-of-the-art deep learning methods applied to the healthcare industry.


2013 ◽  
Vol 371 ◽  
pp. 812-816 ◽  
Author(s):  
Daniel Constantin Anghel ◽  
Nadia Belu

The paper presents a method to use a feed forward neural network in order to rank a working place from the manufacture industry. Neural networks excel in gathering difficult non-linear relationships between the inputs and outputs of a system. The neural network is simulated with a simple simulator: SSNN. In this paper, we considered as relevant for a work place ranking, 6 input parameters: temperature, humidity, noise, luminosity, load and frequency. The neural network designed for the study presented in this paper has 6 input neurons, 13 neurons in the hidden layer and 1 neuron in the output layer. We present also some experimental results obtained through simulations.


Author(s):  
Verner Vlačić ◽  
Helmut Bölcskei

AbstractThis paper addresses the following question of neural network identifiability: Does the input–output map realized by a feed-forward neural network with respect to a given nonlinearity uniquely specify the network architecture, weights, and biases? The existing literature on the subject (Sussman in Neural Netw 5(4):589–593, 1992; Albertini et al. in Artificial neural networks for speech and vision, 1993; Fefferman in Rev Mat Iberoam 10(3):507–555, 1994) suggests that the answer should be yes, up to certain symmetries induced by the nonlinearity, and provided that the networks under consideration satisfy certain “genericity conditions.” The results in Sussman (1992) and Albertini et al. (1993) apply to networks with a single hidden layer and in Fefferman (1994) the networks need to be fully connected. In an effort to answer the identifiability question in greater generality, we derive necessary genericity conditions for the identifiability of neural networks of arbitrary depth and connectivity with an arbitrary nonlinearity. Moreover, we construct a family of nonlinearities for which these genericity conditions are minimal, i.e., both necessary and sufficient. This family is large enough to approximate many commonly encountered nonlinearities to within arbitrary precision in the uniform norm.


2008 ◽  
Vol 3 (1) ◽  
Author(s):  
Jan B Haelssig ◽  
Jules Thibault ◽  
Andre Y. Tremblay

Process design and simulation rely heavily on the accuracy and availability of transport property correlations. General models that combine the properties of pure components often lack the necessary accuracy. In this investigation, neural networks were used to model some important transport properties for the ethanol-water binary system. Specifically, a three-layer feed-forward neural network with six neurons in the hidden layer was used to model viscosity, thermal conductivity, surface tension and the Fick diffusion coefficient based on an array of experimental data. These neural network models were then compared to some conventional models that are commonly used to predict the aforementioned transport properties. The results showed that the neural network models were able to represent the experimental data very well for the system studied. One advantage in using neural network models to represent these properties is their ability to predict complex and interrelated behaviors without a priori information about the underlying model structure. Further, since all the models retain the same simple matrix structure, their integration into computer codes becomes straightforward and non-repetitive.


2021 ◽  
Vol 26 (1) ◽  
pp. 200-215
Author(s):  
Muhammad Alam ◽  
Jian-Feng Wang ◽  
Cong Guangpei ◽  
LV Yunrong ◽  
Yuanfang Chen

AbstractIn recent years, the success of deep learning in natural scene image processing boosted its application in the analysis of remote sensing images. In this paper, we applied Convolutional Neural Networks (CNN) on the semantic segmentation of remote sensing images. We improve the Encoder- Decoder CNN structure SegNet with index pooling and U-net to make them suitable for multi-targets semantic segmentation of remote sensing images. The results show that these two models have their own advantages and disadvantages on the segmentation of different objects. In addition, we propose an integrated algorithm that integrates these two models. Experimental results show that the presented integrated algorithm can exploite the advantages of both the models for multi-target segmentation and achieve a better segmentation compared to these two models.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2852
Author(s):  
Parvathaneni Naga Srinivasu ◽  
Jalluri Gnana SivaSai ◽  
Muhammad Fazal Ijaz ◽  
Akash Kumar Bhoi ◽  
Wonjoon Kim ◽  
...  

Deep learning models are efficient in learning the features that assist in understanding complex patterns precisely. This study proposed a computerized process of classifying skin disease through deep learning based MobileNet V2 and Long Short Term Memory (LSTM). The MobileNet V2 model proved to be efficient with a better accuracy that can work on lightweight computational devices. The proposed model is efficient in maintaining stateful information for precise predictions. A grey-level co-occurrence matrix is used for assessing the progress of diseased growth. The performance has been compared against other state-of-the-art models such as Fine-Tuned Neural Networks (FTNN), Convolutional Neural Network (CNN), Very Deep Convolutional Networks for Large-Scale Image Recognition developed by Visual Geometry Group (VGG), and convolutional neural network architecture that expanded with few changes. The HAM10000 dataset is used and the proposed method has outperformed other methods with more than 85% accuracy. Its robustness in recognizing the affected region much faster with almost 2× lesser computations than the conventional MobileNet model results in minimal computational efforts. Furthermore, a mobile application is designed for instant and proper action. It helps the patient and dermatologists identify the type of disease from the affected region’s image at the initial stage of the skin disease. These findings suggest that the proposed system can help general practitioners efficiently and effectively diagnose skin conditions, thereby reducing further complications and morbidity.


Computers ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 79
Author(s):  
Graham Spinks ◽  
Marie-Francine Moens

This paper proposes a novel technique for representing templates and instances of concept classes. A template representation refers to the generic representation that captures the characteristics of an entire class. The proposed technique uses end-to-end deep learning to learn structured and composable representations from input images and discrete labels. The obtained representations are based on distance estimates between the distributions given by the class label and those given by contextual information, which are modeled as environments. We prove that the representations have a clear structure allowing decomposing the representation into factors that represent classes and environments. We evaluate our novel technique on classification and retrieval tasks involving different modalities (visual and language data). In various experiments, we show how the representations can be compressed and how different hyperparameters impact performance.


2020 ◽  
Vol 8 (4) ◽  
pp. 469
Author(s):  
I Gusti Ngurah Alit Indrawan ◽  
I Made Widiartha

Artificial Neural Networks or commonly abbreviated as ANN is one branch of science from the field of artificial intelligence which is often used to solve various problems in fields that involve grouping and pattern recognition. This research aims to classify Letter Recognition datasets using Artificial Neural Networks which are weighted optimally using the Artificial Bee Colony algorithm. The best classification accuracy results from this study were 92.85% using a combination of 4 hidden layers with each hidden layer containing 10 neurons.


2021 ◽  
Author(s):  
Andrew Bennett ◽  
Bart Nijssen

<p>Machine learning (ML), and particularly deep learning (DL), for geophysical research has shown dramatic successes in recent years. However, these models are primarily geared towards better predictive capabilities, and are generally treated as black box models, limiting researchers’ ability to interpret and understand how these predictions are made. As these models are incorporated into larger models and pushed to be used in more areas it will be important to build methods that allow us to reason about how these models operate. This will have implications for scientific discovery that will ensure that these models are robust and reliable for their respective applications. Recent work in explainable artificial intelligence (XAI) has been used to interpret and explain the behavior of machine learned models.</p><p>Here, we apply new tools from the field of XAI to provide physical interpretations of a system that couples a deep-learning based parameterization for turbulent heat fluxes to a process based hydrologic model. To develop this coupling we have trained a neural network to predict turbulent heat fluxes using FluxNet data from a large number of hydroclimatically diverse sites. This neural network is coupled to the SUMMA hydrologic model, taking imodel derived states as additional inputs to improve predictions. We have shown that this coupled system provides highly accurate simulations of turbulent heat fluxes at 30 minute timesteps, accurately predicts the long-term observed water balance, and reproduces other signatures such as the phase lag with shortwave radiation. Because of these features, it seems this coupled system is learning physically accurate relationships between inputs and outputs. </p><p>We probe the relative importance of which input features are used to make predictions during wet and dry conditions to better understand what the neural network has learned. Further, we conduct controlled experiments to understand how the neural networks are able to learn to regionalize between different hydroclimates. By understanding how these neural networks make their predictions as well as how they learn to make predictions we can gain scientific insights and use them to further improve our models of the Earth system.</p>


2005 ◽  
Vol 128 (4) ◽  
pp. 773-782 ◽  
Author(s):  
H. S. Tan

The conventional approach to neural network-based aircraft engine fault diagnostics has been mainly via multilayer feed-forward systems with sigmoidal hidden neurons trained by back propagation as well as radial basis function networks. In this paper, we explore two novel approaches to the fault-classification problem using (i) Fourier neural networks, which synthesizes the approximation capability of multidimensional Fourier transforms and gradient-descent learning, and (ii) a class of generalized single hidden layer networks (GSLN), which self-structures via Gram-Schmidt orthonormalization. Using a simulation program for the F404 engine, we generate steady-state engine parameters corresponding to a set of combined two-module deficiencies and require various neural networks to classify the multiple faults. We show that, compared to the conventional network architecture, the Fourier neural network exhibits stronger noise robustness and the GSLNs converge at a much superior speed.


Sign in / Sign up

Export Citation Format

Share Document