scholarly journals Using High-Resolution Altimetry to Observe Mesoscale Signals

2012 ◽  
Vol 29 (9) ◽  
pp. 1409-1416 ◽  
Author(s):  
M.-I. Pujol ◽  
G. Dibarboure ◽  
P.-Y. Le Traon ◽  
P. Klein

Abstract An Ocean System Simulation Experiment is used to quantify the observing capability of the Surface Water and Ocean Topography (SWOT) mission and its contribution to higher-quality reconstructed sea level anomaly (SLA) fields using optimal interpolation. The paper focuses on the potential of SWOT for mesoscale observation (wavelengths larger than 100 km and time periods larger than 10 days) and its ability to replace or complement altimetry for classical mesoscale applications. For mesoscale variability, the wide swath from SWOT provides an unprecedented sampling capability. SWOT alone would enable the regional surface signal reconstruction as precisely as a four-altimeter constellation would, in regions where temporal sampling is optimum. For some specifics latitudes, where swath sampling is degraded, SWOT capabilities are reduced and show performances equivalent to the historical two-altimeter constellation. In this case, merging SWOT with the two-altimeter constellation stabilizes the global sampling and fully compensates the swath time sampling limitations. Benefits of SWOT measurement are more important within the swath. It would allow a precise local reconstruction of mesoscale structures. Errors of surface signal reconstruction within the swath represent less than 1% (SLA) to 5% (geostrophic velocities reconstruction) of the signal variance in a pessimistic roll error reduction. The errors are slightly reduced by merging swath measurements with the conventional nadir measurements.

2021 ◽  
Vol 13 (5) ◽  
pp. 986
Author(s):  
Yao Chen ◽  
Mo Huang ◽  
Yuanyuan Zhang ◽  
Changyuan Wang ◽  
Tao Duan

The spaceborne interferometric synthetic aperture radar (InSAR) is expected to measure the sea surface height (SSH) with high accuracy over a wide swath. Since centimeter-level accuracy is required to monitor the ocean sub-mesoscale dynamics, the high accuracy implies that the altimetric errors should be totally understood and strictly controlled. However, for the dynamic waves, they move randomly all the time, and this will lead to significant altimetric errors. This study proposes an analytical method for the dynamic wave-related errors of InSAR SSH measurement based on the wave spectrum and electromagnetic scattering model. Additionally, the mechanisms of the dynamic wave-related errors of InSAR altimetry are analyzed, and the detailed numerical model is derived. The proposed analytical method is validated with NASA’s Surface Water and Ocean Topography (SWOT) project error budget, and the Root-Mean-Square Errors (RMSEs) are in good agreement (0.2486 and 0.2470 cm on a 0.5 km2 grid, respectively). Instead of analysis for a typical project, the proposed method can be applied to different radar parameters under multiple sea states. The RMSEs of Ka-band under low sea state, moderate sea state, and high sea state are 0.2670, 1.3154, and 6.6361 cm, respectively. Moreover, the RMSEs of X-band and Ku-band are also simulated and presented. The experimental results demonstrate that the dynamic wave-related errors of InSAR altimetry are not sensitive to the frequencies but are sensitive to the sea states. The error compensation method is necessary for moderate and higher sea states for centimetric accuracy requirements. This can provide feasible suggestions on system design and error budget for the future interferometric wide-swath altimeter.


2021 ◽  
Author(s):  
Pierre Prandi ◽  
Jean-Christophe Poisson ◽  
Yannice Faugère ◽  
Amandine Guillot ◽  
Gérald Dibarboure

Abstract. We present a new Arctic sea level anomaly dataset, based on the combination of three altimeter missions using an optimal interpolation scheme. Measurements from SARAL/AltiKa, CryoSat-2 and Sentinel-3A are blended together providing an unprecedented resolution for this type of products. The final gridded fields cover all latitudes north of 50° N, on a 25 km EASE2 grid, with one grid every three days over three years from July 2016 to April 2019. We use the Adaptive retracker to process both open ocean and lead echoes on SARAL/AltiKa thus removing the need to estimate a bias between open ocean an ice covered areas. SARAL/AltiKa also provides the baseline for the cross-calibation of CryoSat-2 and Sentinel-3A data. When compared to independent data, the combined product exhibits a much better performance than previously available datasets based on the analysis of a single mission.


Ocean Science ◽  
2012 ◽  
Vol 8 (2) ◽  
pp. 227-248 ◽  
Author(s):  
X. Carton ◽  
P. L'Hegaret ◽  
R. Baraille

Abstract. By analysing ARGO float data over the last four years, a few aspects of the mesoscale variability of water masses in the Arabian Sea are described. The Red Sea Outflow Water (RSOW) is concentrated in the Southwestern Gulf of Aden, in particular when a cyclonic gyre predominates in this region. Salinities of 36.5 and temperatures of 16 °C are found in this area at depths between 600 and 1000 m. RSOW is more dilute in the eastern part of the Gulf, where intense and relatively barotropic gyres mix it with Indian ocean Central Water. RSOW is also detected along the northeastern coast of Socotra, and fragments of RSOW are found between one and three degrees of latitude north of this island. In the whole Gulf of Aden, the correlation between the deep motions of the floats and the sea-level anomaly measured by altimetry is strong, at regional scale. The finer scale details of the float trajectories are not sampled by altimetry and are often related to the anomalous water masses that the floats encounter. The Persian Gulf Water (PGW) is found in the float profiles near Ras ash Sharbatat (near 57° E, 18° N), again with 36.5 in salinity and about 18–19 °C in temperature. These observations were achieved in winter when the southwestward monsoon currents can advect PGW along the South Arabian coast. Fragments of PGW were also observed in the Arabian Sea between 18 and 20° N and 63 and 65° E in summer, showing that this water mass can escape the Gulf of Oman southeastward, during that season. Kinetic energy distributions of floats with respect to distance or angle share common features between the two regions (Gulf of Aden and Arabian Sea), in particular peaks at 30, 50 and 150 km scales and along the axis of monsoon currents. Hydrological measurements by floats are also influenced by the seasonal variations of PGW and RSOW in these regions.


2018 ◽  
Vol 35 (2) ◽  
pp. 281-297 ◽  
Author(s):  
Jinbo Wang ◽  
Lee-Lueng Fu ◽  
Bo Qiu ◽  
Dimitris Menemenlis ◽  
J. Thomas Farrar ◽  
...  

AbstractThe wavenumber spectrum of sea surface height (SSH) is an important indicator of the dynamics of the ocean interior. While the SSH wavenumber spectrum has been well studied at mesoscale wavelengths and longer, using both in situ oceanographic measurements and satellite altimetry, it remains largely unknown for wavelengths less than ~70 km. The Surface Water Ocean Topography (SWOT) satellite mission aims to resolve the SSH wavenumber spectrum at 15–150-km wavelengths, which is specified as one of the mission requirements. The mission calibration and validation (CalVal) requires the ground truth of a synoptic SSH field to resolve the targeted wavelengths, but no existing observational network is able to fulfill the task. A high-resolution global ocean simulation is used to conduct an observing system simulation experiment (OSSE) to identify the suitable oceanographic in situ measurements for SWOT SSH CalVal. After fixing 20 measuring locations (the minimum number for resolving 15–150-km wavelengths) along the SWOT swath, four instrument platforms were tested: pressure-sensor-equipped inverted echo sounders (PIES), underway conductivity–temperature–depth (UCTD) sensors, instrumented moorings, and underwater gliders. In the context of the OSSE, PIES was found to be an unsuitable tool for the target region and for SSH scales 15–70 km; the slowness of a single UCTD leads to significant aliasing by high-frequency motions at short wavelengths below ~30 km; an array of station-keeping gliders may meet the requirement; and an array of moorings is the most effective system among the four tested instruments for meeting the mission’s requirement. The results shown here warrant a prelaunch field campaign to further test the performance of station-keeping gliders.


2020 ◽  
Author(s):  
Mao Zhou ◽  
Taoyong Jin ◽  
Jiancheng Li ◽  
Shengjun Zhang ◽  
Minzhang Hu

<p>Marine gravity is mainly inversed by the nadir satellite altimetry observations. However, the accuracy of the east-west component of vertical deflection is significantly lower than the north-south component. The wide-swath altimeter is one of the main altimetry missions in the future. Its two-dimensional design is expected to obtain high-precision and high-resolution sea surface height simultaneously, and to improve the accuracy of the marine gravity inversion. Taking the SWOT (Surface Water and Ocean Topography) wide-swath altimeter mission as an example, based on the parameters including the ground track and the width of swath, the static sea surface height observations of SWOT, as well as the nadir altimeter missions Jason-1/GM, Cryosat-2/LRM, and SARAL/GM were simulated. Then, the vertical deflections were calculated from above observations to analyze the ability of marine gravity inversion in the South China Sea and part of the Indian Ocean. Compared with EGM2008 model, the vertical deflections determined by one cycle of SWOT are better than the result determined by combining Jason-1/GM, Cryosat-2/LRM, and SARAL/GM. And the results determined by SWOT improve the accuracy of the east-west component of vertical deflection significantly. And then, several specific errors of SWOT satellite were simulated, and their influence on the determination of the vertical deflection was analyzed. It is noted that these errors have certain influence on the accuracy, but can be weakened by using a simple Gaussian filter. In addition, the influence of SWOT sea surface height resolution on the gravity field inversion was analyzed. As a result, under the premise of the designed accuracy and resolution of the SWOT mission, its observations can improve the quality of marine gravity inversion effectively.</p>


Ocean Science ◽  
2021 ◽  
Vol 17 (6) ◽  
pp. 1791-1813
Author(s):  
Robert R. King ◽  
Matthew J. Martin

Abstract. The impact of assimilating simulated wide-swath altimetry observations from the upcoming Surface Water and Ocean Topography (SWOT) mission is assessed using observing system simulation experiments (OSSEs). These experiments use the Met Office 1.5 km resolution North West European Shelf analysis and forecasting system. In an effort to understand the importance of future work to account for correlated errors in the data assimilation scheme, we simulate SWOT observations with and without realistic correlated errors. These are assimilated in OSSEs along with simulated observations of the standard observing network, also with realistic errors added. It was found that while the assimilation of SWOT observations without correlated errors reduced the RMSE (root mean squared error) in sea surface height (SSH) and surface current speeds by up to 20 %, the inclusion of correlated errors in the observations degraded both the SSH and surface currents, introduced an erroneous increase in the mean surface currents and degraded the subsurface temperature and salinity. While restricting the SWOT data to the inner half of the swath and applying observation averaging with a 5 km radius negated most of the negative impacts, it also severely limited the positive impacts. To realise the full benefits in the prediction of the ocean mesoscale offered by wide-swath altimetry missions, it is crucial that methods to ameliorate the effects of correlated errors in the processing of the SWOT observations and account for the correlated errors in the assimilation are implemented.


Author(s):  
M. Srinivasan ◽  
A. Andral ◽  
M. Dejus ◽  
F. Hossain ◽  
C. Peterson ◽  
...  

NASA and the French space agency, CNES, with contributions from the Canadian Space Agency (CSA) and United Kingdom Space Agency (UKSA) are developing new wide swath altimetry technology that will cover most of the world’s ocean and surface freshwater bodies. The proposed Surface Water and Ocean Topography (SWOT) mission will have the capability to make observations of surface water (lakes, rivers, wetland) heights and measurements of ocean surface topography with unprecedented spatial coverage, temporal sampling, and spatial resolution compared to existing technologies. These data will be useful for monitoring the hydrologic cycle, flooding, and characterizing human impacts on a changing environment. <br><br> The applied science community is a key element in the success of the SWOT mission, demonstrating the high value of the science and data products in addressing societal issues and needs. The SWOT applications framework includes a working group made up of applications specialists, SWOT science team members, academics and SWOT Project members to promote applications research and engage a broad community of potential SWOT data users. A defined plan and a guide describing a program to engage early adopters in using proxies for SWOT data, including sophisticated ocean and hydrology simulators, an airborne analogue for SWOT (AirSWOT), and existing satellite datasets, are cornerstones for the program. A user survey is in development and the first user workshop was held in 2015, with annual workshops planned. <br><br> The anticipated science and engineering advances that SWOT will provide can be transformed into valuable services to decision makers and civic organizations focused on addressing global disaster risk reduction initiatives and potential science-based mitigation activities for water resources challenges of the future. With the surface water measurements anticipated from SWOT, a broad range of applications can inform inland and coastal managers and marine operators of terrestrial and oceanic phenomena relevant to their work.


2021 ◽  
Vol 13 (24) ◽  
pp. 4988
Author(s):  
Ning Li ◽  
Hanqing Zhang ◽  
Jianhui Zhao ◽  
Lin Wu ◽  
Zhengwei Guo

Azimuth non-uniform signal-reconstruction is a critical step for azimuth multi-channel high-resolution wide-swath (HRWS) synthetic aperture radar (SAR) data processing. However, the received non-uniform signal has noise in the actual azimuth multi-channel SAR (MCSAR) operation, which leads to the serious reduction in the signal-to-noise ratio (SNR) of the results processed by a traditional reconstruction algorithm. Aiming to address the problem of reducing the SNR of the traditional reconstruction algorithm in the reconstruction of non-uniform signal with noise, a novel signal-reconstruction algorithm based on two-step projection technology (TSPT) for the MCSAR system is proposed in this paper. The key part of the TSPT algorithm consists of a two-step projection. The first projection is to project the given signal into the selected intermediate subspace, spanned by the integer conversion of the compact support kernel function. This process generates a set of sparse equations, which can be solved efficiently by using the sparse equation solver. The second key projection is to project the first projection result into the subspace of the known sampled signal. The secondary projection can be achieved with a digital linear translation invariant (LSI) filter and generate a uniformly spaced signal. As a result, compared with the traditional azimuth MCSAR signal-reconstruction algorithm, the proposed algorithm can improve SNR and reduce the azimuth ambiguity-signal-ratio (AASR). The processing results of simulated data and real raw data verify the effectiveness of the proposed algorithm.


2020 ◽  
Vol 12 (22) ◽  
pp. 3806 ◽  
Author(s):  
Maxime Beauchamp ◽  
Ronan Fablet ◽  
Clément Ubelmann ◽  
Maxime Ballarotta ◽  
Bertrand Chapron

Over the last few years, a very active field of research has aimed at exploring new data-driven and learning-based methodologies to propose computationally efficient strategies able to benefit from the large amount of observational remote sensing and numerical simulations for the reconstruction, interpolation and prediction of high-resolution derived products of geophysical fields. In this paper, we investigate how they might help to solve for the oversmoothing of the state-of-the-art optimal interpolation (OI) techniques in the reconstruction of sea surface height (SSH) spatio-temporal fields. We focus on two small 10°×10° GULFSTREAM and 8°×10° OSMOSIS regions, part of the North Atlantic basin: the GULFSTREAM area is mainly driven by energetic mesoscale dynamics, while OSMOSIS is less energetic but with more noticeable small spatial patterns. Based on observation system simulation experiments (OSSE), we used a NATL60 high resolution deterministic ocean simulation of the North Atlantic to generate two types of pseudo-altimetric observational dataset: along-track nadir data for the current capabilities of the observation system and wide-swath SWOT data in the context of the upcoming SWOT (Surface Water Ocean Topography) mission. We briefly introduce the analog data assimilation (AnDA), an up-to-date version of the DINEOF algorithm, and a new neural networks-based end-to-end learning framework for the representation of spatio-temporal irregularly-sampled data. The main objective of this paper consists of providing a thorough intercomparison exercise with appropriate benchmarking metrics to assess whether these approaches help to improve the SSH altimetric interpolation problem and to identify which one performs best in this context. We demonstrate how the newly introduced NN method is a significant improvement with a plug-and-play implementation and its ability to catch up the small scales ranging up to 40 km, inaccessible by the conventional methods so far. A clear gain is also demonstrated when assimilating jointly wide-swath SWOT and (aggregated) along-track nadir observations.


Sign in / Sign up

Export Citation Format

Share Document