scholarly journals Existence of solutions for a nonhomogeneous Dirichlet problem involving $p(x)$-Laplacian operator and indefinite weight

2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Aboubacar Marcos ◽  
Aboubacar Abdou

Abstract We obtain multiplicity and uniqueness results in the weak sense for the following nonhomogeneous quasilinear equation involving the $p(x)$ p ( x ) -Laplacian operator with Dirichlet boundary condition: $$ -\Delta _{p(x)}u+V(x) \vert u \vert ^{q(x)-2}u =f(x,u)\quad \text{in }\varOmega , u=0 \text{ on }\partial \varOmega , $$ − Δ p ( x ) u + V ( x ) | u | q ( x ) − 2 u = f ( x , u ) in  Ω , u = 0  on  ∂ Ω , where Ω is a smooth bounded domain in $\mathbb{R}^{N}$ R N , V is a given function with an indefinite sign in a suitable variable exponent Lebesgue space, $f(x,t)$ f ( x , t ) is a Carathéodory function satisfying some growth conditions. Depending on the assumptions, the solutions set may consist of a bounded infinite sequence of solutions or a unique one. Our technique is based on a symmetric version of the mountain pass theorem.

Author(s):  
Jenica Cringanu

The purpose of this paper is to show the existence results for the following abstract equation Jpu = Nfu,where Jp is the duality application on a real reflexive and smooth X Banach space, that corresponds to the gauge function φ(t) = tp-1, 1 < p < ∞. We assume that X is compactly imbedded in Lq(Ω), where Ω is a bounded domain in RN, N ≥ 2, 1 < q < p∗, p∗ is the Sobolev conjugate exponent.Nf : Lq(Ω) → Lq′(Ω), 1/q + 1/q′ = 1, is the Nemytskii operator that Caratheodory function generated by a f : Ω × R → R which satisfies some growth conditions. We use topological methods (via Leray-Schauder degree), critical points methods (the Mountain Pass theorem) and a direct variational method to prove the existence of the solutions for the equation Jpu = Nfu.


2019 ◽  
Vol 12 (3) ◽  
pp. 253-275 ◽  
Author(s):  
Patrizia Pucci ◽  
Mingqi Xiang ◽  
Binlin Zhang

AbstractThe paper is concerned with existence of nonnegative solutions of a Schrödinger–Choquard–Kirchhoff-type fractional p-equation. As a consequence, the results can be applied to the special case(a+b\|u\|_{s}^{p(\theta-1)})[(-\Delta)^{s}_{p}u+V(x)|u|^{p-2}u]=\lambda f(x,u)% +\Bigg{(}\int_{\mathbb{R}^{N}}\frac{|u|^{p_{\mu,s}^{*}}}{|x-y|^{\mu}}\,dy% \Biggr{)}|u|^{p_{\mu,s}^{*}-2}u\quad\text{in }\mathbb{R}^{N},where\|u\|_{s}=\Bigg{(}\iint_{\mathbb{R}^{2N}}\frac{|u(x)-u(y)|^{p}}{|x-y|^{N+ps}}% \,dx\,dy+\int_{\mathbb{R}^{N}}V(x)|u|^{p}\,dx\Biggr{)}^{\frac{1}{p}},{a,b\in\mathbb{R}^{+}_{0}}, with {a+b>0}, {\lambda>0} is a parameter, {s\in(0,1)}, {N>ps}, {\theta\in[1,N/(N-ps))}, {(-\Delta)^{s}_{p}} is the fractional p-Laplacian, {V:\mathbb{R}^{N}\rightarrow\mathbb{R}^{+}} is a potential function, {0<\mu<N}, {p_{\mu,s}^{*}=(pN-p\mu/2)/(N-ps)} is the critical exponent in the sense of Hardy–Littlewood–Sobolev inequality, and {f:\mathbb{R}^{N}\times\mathbb{R}\rightarrow\mathbb{R}} is a Carathéodory function. First, via the Mountain Pass theorem, existence of nonnegative solutions is obtained when f satisfies superlinear growth conditions and λ is large enough. Then, via the Ekeland variational principle, existence of nonnegative solutions is investigated when f is sublinear at infinity and λ is small enough. More intriguingly, the paper covers a novel feature of Kirchhoff problems, which is the fact that the parameter a can be zero. Hence the results of the paper are new even for the standard stationary Kirchhoff problems.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Qilin Xie ◽  
Huafeng Xiao

AbstractIn the present paper, we consider the following discrete Schrödinger equations $$ - \biggl(a+b\sum_{k\in \mathbf{Z}} \vert \Delta u_{k-1} \vert ^{2} \biggr) \Delta ^{2} u_{k-1}+ V_{k}u_{k}=f_{k}(u_{k}) \quad k\in \mathbf{Z}, $$ − ( a + b ∑ k ∈ Z | Δ u k − 1 | 2 ) Δ 2 u k − 1 + V k u k = f k ( u k ) k ∈ Z , where a, b are two positive constants and $V=\{V_{k}\}$ V = { V k } is a positive potential. $\Delta u_{k-1}=u_{k}-u_{k-1}$ Δ u k − 1 = u k − u k − 1 and $\Delta ^{2}=\Delta (\Delta )$ Δ 2 = Δ ( Δ ) is the one-dimensional discrete Laplacian operator. Infinitely many high-energy solutions are obtained by the Symmetric Mountain Pass Theorem when the nonlinearities $\{f_{k}\}$ { f k } satisfy 4-superlinear growth conditions. Moreover, if the nonlinearities are sublinear at infinity, we obtain infinitely many small solutions by the new version of the Symmetric Mountain Pass Theorem of Kajikiya.


2006 ◽  
Vol 11 (4) ◽  
pp. 323-329 ◽  
Author(s):  
G. A. Afrouzi ◽  
S. H. Rasouli

This study concerns the existence of positive solutions to classes of boundary value problems of the form−∆u = g(x,u), x ∈ Ω,u(x) = 0, x ∈ ∂Ω,where ∆ denote the Laplacian operator, Ω is a smooth bounded domain in RN (N ≥ 2) with ∂Ω of class C2, and connected, and g(x, 0) < 0 for some x ∈ Ω (semipositone problems). By using the method of sub-super solutions we prove the existence of positive solution to special types of g(x,u).


2013 ◽  
Vol 143 (6) ◽  
pp. 1185-1208 ◽  
Author(s):  
Rosaria Di Nardo ◽  
Filomena Feo ◽  
Olivier Guibé

We consider a general class of parabolic equations of the typewith Dirichlet boundary conditions and with a right-hand side belonging to L1 + Lp′ (W−1, p′). Using the framework of renormalized solutions we prove uniqueness results under appropriate growth conditions and Lipschitz-type conditions on a(u, ∇u), K(u) and H(∇u).


2012 ◽  
Vol 14 (03) ◽  
pp. 1250021 ◽  
Author(s):  
FRANCISCO ODAIR DE PAIVA

This paper is devoted to the study of existence, nonexistence and multiplicity of positive solutions for the semilinear elliptic problem [Formula: see text] where Ω is a bounded domain of ℝN, λ ∈ ℝ and g(x, u) is a Carathéodory function. The obtained results apply to the following classes of nonlinearities: a(x)uq + b(x)up and c(x)(1 + u)p (0 ≤ q < 1 < p). The proofs rely on the sub-super solution method and the mountain pass theorem.


2022 ◽  
Vol 40 ◽  
pp. 1-8
Author(s):  
Makkia Dammak ◽  
Majdi El Ghord ◽  
Saber Ali Kharrati

Abstract: In this note, we deal with the Helmholtz equation −∆u+cu = λf(u) with Dirichlet boundary condition in a smooth bounded domain Ω of R n , n > 1. The nonlinearity is superlinear that is limt−→∞ f(t) t = ∞ and f is a positive, convexe and C 2 function defined on [0,∞). We establish existence of regular solutions for λ small enough and the bifurcation phenomena. We prove the existence of critical value λ ∗ such that the problem does not have solution for λ > λ∗ even in the weak sense. We also prove the existence of a type of stable solutions u ∗ called extremal solutions. We prove that for f(t) = e t , Ω = B1 and n ≤ 9, u ∗ is regular.


2013 ◽  
Vol 33 (1) ◽  
pp. 9
Author(s):  
Ahmed Dakkak ◽  
Siham El Habib ◽  
Najib Tsouli

This work deals with an indefinite weight one dimensional eigenvalue problem of the p-Laplacian operator subject to Neumann boundary conditions. We are interested in some properties of the spectrum like simplicity, monotonicity and strict monotonicity with respect to the weight. We also aim the study of zeros points of eigenfunctions.


2019 ◽  
Vol 17 (04) ◽  
pp. 665-688
Author(s):  
Claudianor O. Alves ◽  
Edcarlos D. Silva ◽  
Marcos T. O. Pimenta

The existence and multiplicity of solutions for a class of quasilinear elliptic problems are established for the type [Formula: see text] where [Formula: see text], [Formula: see text], is a smooth bounded domain. The nonlinear term [Formula: see text] is a continuous function which is superlinear at the origin and infinity. The function [Formula: see text] is an [Formula: see text]-function where the well-known [Formula: see text]-condition is not assumed. Then the Orlicz–Sobolev space [Formula: see text] may be non-reflexive. As a main model, we have the function [Formula: see text]. Here, we consider some situations where it is possible to work with global minimization, local minimization and mountain pass theorem. However, some estimates employed here are not standard for this type of problem taking into account the modular given by the [Formula: see text]-function [Formula: see text].


2019 ◽  
Vol 150 (6) ◽  
pp. 3074-3086
Author(s):  
Patricio Cerda ◽  
Leonelo Iturriaga

AbstractIn this paper, we study the existence of weak solutions of the quasilinear equation \begin{cases} -{\rm div} (a(\vert \nabla u \vert ^2)\nabla u)=\lambda f(x,u) &{\rm in} \ \Omega,\\ u=0 &{\rm on} \ \partial\Omega, \end{cases}where a : ℝ → [0, ∞) is C1 and a nonincreasing continuous function near the origin, the nonlinear term f : Ω × ℝ → ℝ is a Carathéodory function verifying certain superlinear conditions only at zero, and λ is a positive parameter. The existence of the solution relies on C1-estimates and variational arguments.


Sign in / Sign up

Export Citation Format

Share Document