Sediments with gas hydrates: Internal structure from seismic AVO

Geophysics ◽  
1998 ◽  
Vol 63 (5) ◽  
pp. 1659-1669 ◽  
Author(s):  
Christine Ecker ◽  
Jack Dvorkin ◽  
Amos Nur

We interpret amplitude variation with offset (AVO) data from a bottom simulating reflector (BSR) offshore Florida by using rock‐physics‐based synthetic seismic models. A previously conducted velocity and AVO analysis of the in‐situ seismic data showed that the BSR separates hydrate‐bearing sediments from sediments containing free methane. The amplitude at the BSR are increasingly negative with increasing offset. This behavior was explained by P-wave velocity above the BSR being larger than that below the BSR, and S-wave velocity above the BSR being smaller than that below the BSR. We use these AVO and velocity results to infer the internal structure of the hydrated sediment. To do so, we examine two micromechanical models that correspond to the two extreme cases of hydrate deposition in the pore space: (1) the hydrate cements grain contacts and strongly reinforces the sediment, and (2) the hydrate is located away from grain contacts and does not affect the stiffness of the sediment frame. Only the second model can qualitatively reproduce the observed AVO response. Thus inferred internal structure of the hydrate‐bearing sediment means that (1) the sediment above the BSR is uncemented and, thereby, mechanically weak, and (2) its permeability is very low because the hydrate clogs large pore‐space conduits. The latter explains why free gas is trapped underneath the BSR. The seismic data also indicate the absence of strong reflections at the top of the hydrate layer. This fact suggests that the high concentration of hydrates in the sediment just above the BSR gradually decreases with decreasing depth. This effect is consistent with the fact that the low‐permeability hydrated sediments above the BSR prevent free methane from migrating upwards.

2005 ◽  
Vol 7 ◽  
pp. 13-16
Author(s):  
Peter Japsen ◽  
Anders Bruun ◽  
Ida L. Fabricius ◽  
Gary Mavko

Seismic data are mainly used to map out structures in the subsurface, but are also increasingly used to detect differences in porosity and in the fluids that occupy the pore space in sedimentary rocks. Hydrocarbons are generally lighter than brine, and the bulk density and sonic velocity (speed of pressure waves or P-wave velocity) of hydrocarbon-bearing sedimentary rocks are therefore reduced compared to non-reservoir rocks. However, sound is transmitted in different wave forms through the rock, and the shear velocity (speed of shear waves or S-wave velocity) is hardly affected by the density of the pore fluid. In order to detect the presence of hydrocarbons from seismic data, it is thus necessary to investigate how porosity and pore fluids affect the acoustic properties of a sedimentary rock. Much previous research has focused on describing such effects in sandstone (see Mavko et al. 1998), and only in recent years have corresponding studies on the rock physics of chalk appeared (e.g. Walls et al. 1998; Røgen 2002; Fabricius 2003; Gommesen 2003; Japsen et al. 2004). In the North Sea, chalk of the Danian Ekofisk Formation and the Maastrichtian Tor Formation are important reservoir rocks. More information could no doubt be extracted from seismic data if the fundamental physical properties of chalk were better understood. The presence of gas in chalk is known to cause a phase reversal in the seismic signal (Megson 1992), but the presence of oil in chalk has only recently been demonstrated to have an effect on surface seismic data (Japsen et al. 2004). The need for a better link between chalk reservoir parameters and geophysical observations has, however, strongly increased since the discovery of the Halfdan field proved major reserves outside four-way dip closures (Jacobsen et al. 1999; Vejbæk & Kristensen 2000).


2019 ◽  
Vol 38 (10) ◽  
pp. 762-769
Author(s):  
Patrick Connolly

Reflectivities of elastic properties can be expressed as a sum of the reflectivities of P-wave velocity, S-wave velocity, and density, as can the amplitude-variation-with-offset (AVO) parameters, intercept, gradient, and curvature. This common format allows elastic property reflectivities to be expressed as a sum of AVO parameters. Most AVO studies are conducted using a two-term approximation, so it is helpful to reduce the three-term expressions for elastic reflectivities to two by assuming a relationship between P-wave velocity and density. Reduced to two AVO components, elastic property reflectivities can be represented as vectors on intercept-gradient crossplots. Normalizing the lengths of the vectors allows them to serve as basis vectors such that the position of any point in intercept-gradient space can be inferred directly from changes in elastic properties. This provides a direct link between properties commonly used in rock physics and attributes that can be measured from seismic data. The theory is best exploited by constructing new seismic data sets from combinations of intercept and gradient data at various projection angles. Elastic property reflectivity theory can be transferred to the impedance domain to aid in the analysis of well data to help inform the choice of projection angles. Because of the effects of gradient measurement errors, seismic projection angles are unlikely to be the same as theoretical angles or angles derived from well-log analysis, so seismic data will need to be scanned through a range of angles to find the optimum.


Geophysics ◽  
2010 ◽  
Vol 75 (5) ◽  
pp. 75A3-75A13 ◽  
Author(s):  
Douglas J. Foster ◽  
Robert G. Keys ◽  
F. David Lane

We investigate the effects of changes in rock and fluid properties on amplitude-variation-with-offset (AVO) responses. In the slope-intercept domain, reflections from wet sands and shales fall on or near a trend that we call the fluid line. Reflections from the top of sands containing gas or light hydrocarbons fall on a trend approximately parallel to the fluid line; reflections from the base of gas sands fall on a parallel trend on the opposing side of the fluid line. The polarity standard of the seismic data dictates whether these reflections from the top of hydrocarbon-bearing sands are below or above the fluid line. Typically, rock properties of sands and shales differ, and therefore reflections from sand/shale interfaces are also displaced from the fluid line. The distance of these trends from the fluid line depends upon the contrast of the ratio of P-wave velocity [Formula: see text] and S-wave velocity [Formula: see text]. This ratio is a function of pore-fluid compressibility and implies that distance from the fluid line increases with increasing compressibility. Reflections from wet sands are closer to the fluid line than hydrocarbon-related reflections. Porosity changes affect acoustic impedance but do not significantly impact the [Formula: see text] contrast. As a result, porosity changes move the AVO response along trends approximately parallel to the fluid line. These observations are useful for interpreting AVO anomalies in terms of fluids, lithology, and porosity.


2021 ◽  
Author(s):  
Sheng Chen ◽  
Qingcai Zeng ◽  
Xiujiao Wang ◽  
Qing Yang ◽  
Chunmeng Dai ◽  
...  

Abstract Practices of marine shale gas exploration and development in south China have proved that formation overpressure is the main controlling factor of shale gas enrichment and an indicator of good preservation condition. Accurate prediction of formation pressure before drilling is necessary for drilling safety and important for sweet spots predicting and horizontal wells deploying. However, the existing prediction methods of formation pore pressures all have defects, the prediction accuracy unsatisfactory for shale gas development. By means of rock mechanics analysis and related formulas, we derived a formula for calculating formation pore pressures. Through regional rock physical analysis, we determined and optimized the relevant parameters in the formula, and established a new formation pressure prediction model considering P-wave velocity, S-wave velocity and density. Based on regional exploration wells and 3D seismic data, we carried out pre-stack seismic inversion to obtain high-precision P-wave velocity, S-wave velocity and density data volumes. We utilized the new formation pressure prediction model to predict the pressure and the spatial distribution of overpressure sweet spots. Then, we applied the measured pressure data of three new wells to verify the predicted formation pressure by seismic data. The result shows that the new method has a higher accuracy. This method is qualified for safe drilling and prediction of overpressure sweet spots for shale gas development, so it is worthy of promotion.


Geophysics ◽  
2012 ◽  
Vol 77 (3) ◽  
pp. B125-B134 ◽  
Author(s):  
Xiujuan Wang ◽  
Myung Lee ◽  
Shiguo Wu ◽  
Shengxiong Yang

Wireline logs were acquired in eight wells during China’s first gas hydrate drilling expedition (GMGS-1) in April–June of 2007. Well logs obtained from site SH3 indicated gas hydrate was present in the depth range of 195–206 m below seafloor with a maximum pore-space gas hydrate saturation, calculated from pore water freshening, of about 26%. Assuming gas hydrate is uniformly distributed in the sediments, resistivity calculations using Archie’s equation yielded hydrate-saturation trends similar to those from chloride concentrations. However, the measured compressional (P-wave) velocities decreased sharply at the depth between 194 and 199 mbsf, dropping as low as [Formula: see text], indicating the presence of free gas in the pore space, possibly caused by the dissociation of gas hydrate during drilling. Because surface seismic data acquired prior to drilling were not influenced by the in situ gas hydrate dissociation, surface seismic data could be used to identify the cause of the low P-wave velocity observed in the well log. To determine whether the low well-log P-wave velocity was caused by in situ free gas or by gas hydrate dissociation, synthetic seismograms were generated using the measured well-log P-wave velocity along with velocities calculated assuming both gas hydrate and free gas in the pore space. Comparing the surface seismic data with various synthetic seismograms suggested that low P-wave velocities were likely caused by the dissociation of in situ gas hydrate during drilling.


Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. U139-U149
Author(s):  
Hongwei Liu ◽  
Mustafa Naser Al-Ali ◽  
Yi Luo

Seismic images can be viewed as photographs for underground rocks. These images can be generated from different reflections of elastic waves with different rock properties. Although the dominant seismic data processing is still based on the acoustic wave assumption, elastic wave processing and imaging have become increasingly popular in recent years. A major challenge in elastic wave processing is shear-wave (S-wave) velocity model building. For this reason, we have developed a sequence of procedures for estimating seismic S-wave velocities and the subsequent generation of seismic images using converted waves. We have two main essential new supporting techniques. The first technique is the decoupling of the S-wave information by generating common-focus-point gathers via application of the compressional-wave (P-wave) velocity on the converted seismic data. The second technique is to assume one common VP/ VS ratio to approximate two types of ratios, namely, the ratio of the average earth layer velocity and the ratio of the stacking velocity. The benefit is that we reduce two unknown ratios into one, so it can be easily scanned and picked in practice. The PS-wave images produced by this technology could be aligned with the PP-wave images such that both can be produced in the same coordinate system. The registration between the PP and PS images provides cross-validation of the migrated structures and a better estimation of underground rock and fluid properties. The S-wave velocity, computed from the picked optimal ratio, can be used not only for generating the PS-wave images, but also to ensure well registration between the converted-wave and P-wave images.


Geophysics ◽  
2007 ◽  
Vol 72 (1) ◽  
pp. B1-B7 ◽  
Author(s):  
Abdullatif A. Al-Shuhail

Vertical aligned fractures can significantly enhance the horizontal permeability of a tight reservoir. Therefore, it is important to know the fracture porosity and direction in order to develop the reservoir efficiently. P-wave AVOA (amplitude variation with offset and azimuth) can be used to determine these fracture parameters. In this study, I present a method for inverting the fracture porosity from 2D P-wave seismic data. The method is based on a modeling result that shows that the anisotropic AVO (amplitude variation with offset) gradient is negative and linearly dependent on the fracture porosity in a gas-saturated reservoir, whereas the gradient is positive and linearly dependent on the fracture porosity in a liquid-saturated reservoir. This assumption is accurate as long as the crack aspect ratio is less than 0.1 and the ratio of the P-wave velocity to the S-wave velocity is greater than 1.8 — two conditions that are satisfied in most naturally fractured reservoirs. The inversion then uses the fracture strike, the crack aspect ratio, and the ratio of the P-wave velocity to the S-wave velocity to invert the fracture porosity from the anisotropic AVO gradient after inferring the fluid type from the sign of the anisotropic AVO gradient. When I applied this method to a seismic line from the oil-saturated zone of the fractured Austin Chalk of southeast Texas, I found that the inversion gave a median fracture porosity of 0.21%, which is within the fracture-porosity range commonly measured in cores from the Austin Chalk.


Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. R245-R255 ◽  
Author(s):  
Ali Gholami ◽  
Hossein S. Aghamiry ◽  
Mostafa Abbasi

The inversion of prestack seismic data using amplitude variation with offset (AVO) has received increased attention in the past few decades because of its key role in estimating reservoir properties. AVO is mainly governed by the Zoeppritz equations, but traditional inversion techniques are based on various linear or quasilinear approximations to these nonlinear equations. We have developed an efficient algorithm for nonlinear AVO inversion of precritical reflections using the exact Zoeppritz equations in multichannel and multi-interface form for simultaneous estimation of the P-wave velocity, S-wave velocity, and density. The total variation constraint is used to overcome the ill-posedness while solving the forward nonlinear model and to preserve the sharpness of the interfaces in the parameter space. The optimization is based on a combination of Levenberg’s algorithm and the split Bregman iterative scheme, in which we have to refine the data and model parameters at each iteration. We refine the data via the original nonlinear equations, but we use the traditional cost-effective linearized AVO inversion to construct the Jacobian matrix and update the model. Numerical experiments show that this new iterative procedure is convergent and converges to a solution of the nonlinear problem. We determine the performance and optimality of our nonlinear inversion algorithm with various simulated and field seismic data sets.


Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. C57-C67 ◽  
Author(s):  
Xian-Yun Wu ◽  
Ru-Shan Wu

We propose a dual-domain, one-way, elastic thin-slab method for fast and accurate amplitude variation with offset (AVO) modeling. In this method, the wavefield propagates in the wavenumber domain and interacts with heterogeneity in the space domain. The approach requires much less memory and is two to three orders of magnitude faster than a full-wave method using finite difference or finite element. The thin-bed AVO and AVOs with lateral parameter variations have been conducted using the thin-slab method and compared with reflectivity and finite-difference methods, respectively. It is shown that the thin-slab method can be used to accurately model reflections for most sedimentary rocks that have intermediate parameter perturbations ([Formula: see text] for P-wave velocity and [Formula: see text] for S-wave velocity). The combined effects of overburden structure and the scattering associated with heterogeneities on AVO have been investigated using the thin-slab method. Properties of the target zone and overburden structure control the AVO trends at overall offsets. Scattering associated with heterogeneities increases local variance in the reflected amplitudes and becomes significant for the sedimentary models with weak reflections. Interpretation of AVO observations based on homogeneous elastic models would therefore bias the estimated properties of the target. Furthermore, these effects can produce different apparent AVO trends in different offset ranges.


2019 ◽  
Vol 38 (5) ◽  
pp. 342-348 ◽  
Author(s):  
Guilherme Fernandes Vasquez ◽  
Marcio José Morschbacher ◽  
Camila Wense Dias dos Anjos ◽  
Yaro Moisés Parisek Silva ◽  
Vanessa Madrucci ◽  
...  

The deposition of the presalt section from Santos Basin began when Gondwana started to break up and South America and Africa were separating. Initial synrift carbonate deposits affected by relatively severe tectonic activity evolved to a lacustrine carbonate environment during the later stages of basin formation. Although the reservoirs are composed of carbonate rocks, the occurrence of faults and the intense colocation of igneous rocks served as a source of chemical elements uncommon in typical carbonate environments. Consequently, beyond the presence of different facies with complex textures and pore geometries, the presalt reservoir rocks present marked compositional and microstructural variability. Therefore, rock-physics modeling is used to understand and interpret the extensive laboratory measurements of P-wave velocities, S-wave velocities, and density that we have undertaken on the presalt carbonate cores from Santos Basin. We show that quartz and exotic clay minerals (such as stevensite and other magnesium-rich clay minerals), which have different values of elastic moduli and Poisson's ratio as compared to calcite and dolomite, may introduce noticeable “Poisson's reflectivity anomalies” on prestack seismic data. Moreover, although the authors concentrate their attention on composition, it will become clear that pore-space geometry also may influence seismic rock properties of presalt carbonate reservoirs.


Sign in / Sign up

Export Citation Format

Share Document