Dynamic Modelling of Wind Farm Grid Interaction

2002 ◽  
Vol 26 (4) ◽  
pp. 191-210 ◽  
Author(s):  
Anca D. Hansen ◽  
Poul Sørensen ◽  
Frede Blaabjerg ◽  
John Becho

This paper describes a dynamic model of a wind farm and its nearest utility grid. It is intended to use this model in studies addressing the dynamic interaction between a wind farm and a power system, both during normal operation of the wind farm and during transient grid fault events. The model comprises the substation where the wind farm is connected, the internal power collection system of the wind farm, the electrical, mechanical and aerodynamic models for the wind turbines, and a wind model. The integrated model is built to enable the assessment of power quality and control strategies. It is implemented in the commercial dedicated power system simulation tool DIgSILENT.

2014 ◽  
Vol 1070-1072 ◽  
pp. 779-784
Author(s):  
Dan Luo ◽  
Yi Xiao ◽  
Jie Na Zhou

Harmonic Analysis and control is very important for the power system because harmonics have serious harm to its normal operation. Harmonic Analysis uses fast Fourier transform (FFT) to solve this problem though it causes the spectrum leakage which Increases the calculation error. To solve this problem, the interpolation algorithm combine with tapered time windows are used. The tapered time windows solve the long-range leakage and the interpolation algorithm solves the problem of short-range leakage.


2019 ◽  
Vol 9 (16) ◽  
pp. 3218 ◽  
Author(s):  
Qi Wang ◽  
Hongru Wang ◽  
Lei Zhu ◽  
Xingquan Wu ◽  
Yi Tang

Demand response (DR) is widely accepted as a feasible and potential solution to improve the operation of the power system. In this paper, an economical and practical DR system architecture based on internet and Internet of things (IoT) communication technologies is discussed to achieve wide-area DR control without using an expensive metering infrastructure. Multi agents are introduced with respective control strategies to implement multi-time-scale control in a power system. In order to support quick DR strategies, a novel smart terminal design for the proposed DR system is described with functions of local parameter detection and action. The practicality of the proposed system was validated on a developed hardware-in-loop co-simulation platform.


2013 ◽  
Vol 380-384 ◽  
pp. 2962-2966
Author(s):  
Chun Guang Tian ◽  
De Xin Li ◽  
Li Xia Cai ◽  
Tian Dong ◽  
Xiao Juan Han

As one of main clean energies, wind power has been developed fast, but the fluctuations of active power at a wind farm is a huge challenge for the grid system, thus it is essential for wind farm connected into grid to detection the active power. This paper studied control strategies and detection methods of the active power at a wind farm. Simulation results showed the effective detection of active power at a wind farm can improve the characteristics of the grid and the ability of wind farm to regulate the grid and increase the scheduled ability of wind farm.


2021 ◽  
Vol 233 ◽  
pp. 04033
Author(s):  
Haosheng Wang ◽  
Hongen Zhong

Spacecraft power system simulation involves the coupling of electrical, thermal and control domains. At present, the modeling and simulation of multi-domain physical system mainly uses the single-domain software to establish a single-domain model, and solves the unified multi-domain modeling and simulation through the interface between the software or using HLA. But it cannot fully support the modeling and simulation of multi-domain physical system, and the model has poor reusability and extensibility. As a multi-domain modeling language, Modelica language supports acausal modelling, unified multi-domain modeling, object-oriented physical modeling and hybrid modeling. So it is widely used in the aerospace area. In this paper, Modelica language is used to establish module library of spacecraft power system on simulation platform MWorks, and the multi-domain simulation model of spacecraft power system is obtained by assembling each sub-model, and the performance of the model is simulated and analyzed so as to achieve the purpose of improving and verifying the model.


2019 ◽  
Author(s):  
Paul Hulsman ◽  
Søren Juhl Andersen ◽  
Tuhfe Göçmen

Abstract. This paper aims to develop fast and reliable surrogate models for yaw-based wind farm control. The surrogates, based on polynomial chaos expansion (PCE), are built using high fidelity flow simulations combined with aeroelastic simulations of the turbine performance and loads. Developing a model for wind farm control is a challenging control problem due to the time-varying dynamics of the wake. Both the power output and the loading of the turbines are included in the optimization of wind farm control strategies. Optimization results performed using two Vestas V27 turbines in a row for a specific atmospheric condition suggest that a power gain of almost 3 % ± 1 % can be achieved at close spacing by yawing the upstream turbine more than 15°. At larger spacing, the power gain the optimization shows that yawing is not beneficial as the optimization reverts to normal operation. Furthermore, it was also identified that a reduction of the equivalent loads was obtained at the cost of power production. The total power gains are discussed in relation to the associated model errors and the uncertainty of the surrogate models used in the optimization, and the implication for wind farm control.


2012 ◽  
Vol 433-440 ◽  
pp. 2788-2793 ◽  
Author(s):  
Lin Geng ◽  
Shou Zhen Zhu ◽  
Jing Hong Zheng ◽  
Xiao Yu Wang ◽  
Qun Ju Li ◽  
...  

The increasing size of wind power generation requires considering wind farm model in power system stability analysis. Nowadays, the most widely used wind turbine type is doubly-fed induction generator, which is concerned here. The wind farm detailed model including every individual DFIG is high-dimensional and costs a lot of computation time, thus wind farm equivalent model is required. This paper presents an eigen analysis based approach to settle wind farm equivalent modeling for power system simulation. Simulation results indicate the equivalent model has good accuracy, and can reflect wind farm features, which is proper for large-scale power system simulation.


2021 ◽  
Author(s):  
◽  
Hatem I. Alzaanin

<p>The substantial penetration of wind power introduces increased flexibility requirements on the power system and puts increased pressure on the instantaneous reserve levels required. Instantaneous reserves are a security product that ensures that electricity demand can continue to be met in the event of unplanned generation or transmission interruptions. This reserve must be available to respond very quickly to generation-demand variability. While this is an integral component of the power system, providing instantaneous reserve increases the production cost of power. More calls from energy researchers and stakeholders ask for loads to play an increasingly important role in balancing the short timescale fluctuations in generated wind power. The purpose of this study is to assess the current level of demand responsiveness among domestic refrigerators, freezers, and water heaters and their potential to contribute towards instantaneous reserve and balance the fluctuation of wind. Refrigerators, freezers, and water heaters can generally store energy due to their thermal mass. Interrupting these domestic loads for short time by employing direct load control strategies makes it possible to control these appliances by turning them on or off before their reach their maximum or minimum temperatures or by slightly modifying their temperature set point. Using this strategy helps to ensure that the overall satisfaction of consumers should not be affected. This study first modelled the load profiles of the participated residential appliances and statistically assessed the potential of controlling these residential loads using direct load control strategies to contribute towards instantaneous reserves to mitigate and balance the fluctuation of wind power in the years: 2014, 2020 and 2030. In the second section, it demonstrated the capabilities of the assessed residential responsive loads within Wellington Region network to compensate for and balance the fluctuation of wind power generated from the West Wind Farm in seven selected days in 2013-2014 as a showcase. Such technology can enable a power system operator to remove the burden of both providing instantaneous reserve from conventional sources, and instead maintain such capacity from available residential demand response. The study ends with recommendations to engage residential loads in fast timescale demand response and suggests directions for future research.</p>


Sign in / Sign up

Export Citation Format

Share Document