scholarly journals On a group analogue of the Heyde theorem

2020 ◽  
Vol 32 (2) ◽  
pp. 307-318 ◽  
Author(s):  
Margaryta Myronyuk

AbstractHeyde proved that a Gaussian distribution on a real line is characterized by the symmetry of the conditional distribution of one linear form given another. The present article is devoted to an analogue of the Heyde theorem in the case when random variables take values in a locally compact Abelian group and the coefficients of the linear forms are integers.

2019 ◽  
Vol 489 (3) ◽  
pp. 227-231
Author(s):  
G. M. Feldman

According to the Heyde theorem the Gaussian distribution on the real line is characterized by the symmetry of the conditional distribution of one linear form of independent random variables given the other. We prove an analogue of this theorem for linear forms of two independent random variables taking values in an -adic solenoid containing no elements of order 2. Coefficients of the linear forms are topological automorphisms of the -adic solenoid.


2010 ◽  
Vol 88 (3) ◽  
pp. 339-352 ◽  
Author(s):  
GENNADIY FELDMAN ◽  
PIOTR GRACZYK

AbstractAccording to the Skitovich–Darmois theorem, the independence of two linear forms of n independent random variables implies that the random variables are Gaussian. We consider the case where independent random variables take values in a second countable locally compact abelian group X, and coefficients of the forms are topological automorphisms of X. We describe a wide class of groups X for which a group-theoretic analogue of the Skitovich–Darmois theorem holds true when n=2.


2010 ◽  
Vol 88 (1) ◽  
pp. 93-102 ◽  
Author(s):  
MARGARYTA MYRONYUK

AbstractLet X be a countable discrete abelian group with automorphism group Aut(X). Let ξ1 and ξ2 be independent X-valued random variables with distributions μ1 and μ2, respectively. Suppose that α1,α2,β1,β2∈Aut(X) and β1α−11±β2α−12∈Aut(X). Assuming that the conditional distribution of the linear form L2 given L1 is symmetric, where L2=β1ξ1+β2ξ2 and L1=α1ξ1+α2ξ2, we describe all possibilities for the μj. This is a group-theoretic analogue of Heyde’s characterization of Gaussian distributions on the real line.


1973 ◽  
Vol 9 (1) ◽  
pp. 73-82 ◽  
Author(s):  
U.B. Tewari ◽  
A.K. Gupta

Let G be a locally compact abelian group and Ĝ be its dual group. For 1 ≤ p < ∞, let Ap (G) denote the set of all those functions in L1(G) whose Fourier transforms belong to Lp (Ĝ). Let M(Ap (G)) denote the set of all functions φ belonging to L∞(Ĝ) such that is Fourier transform of an L1-function on G whenever f belongs to Ap (G). For 1 ≤ p < q < ∞, we prove that Ap (G) Aq(G) provided G is nondiscrete. As an application of this result we prove that if G is an infinite compact abelian group and 1 ≤ p ≤ 4 then lp (Ĝ) M(Ap(G)), and if p > 4 then there exists ψ є lp (Ĝ) such that ψ does not belong to M(Ap (G)).


Sign in / Sign up

Export Citation Format

Share Document