scholarly journals Long-term landscape evolution of the Molise sector of the central-southern Apennines, Italy

2017 ◽  
Vol 68 (1) ◽  
pp. 29-42 ◽  
Author(s):  
Vincenzo Amato ◽  
Pietro P.C. Aucelli ◽  
Vito Bracone ◽  
Massimo Cesarano ◽  
Carmen Maria Rosskopf

AbstractThis paper concerns the reconstruction of the main stages of the long-term landscape evolution of the Molise portion of the central-southern Apennines along a transect divided into three sectors (SW, Central and NE). Analysis mainly focused on geomorphological, stratigraphical and structural data supported by chronological constraints, coming from an overall review of past literature and several studies carried out by the authors of the paper during the last 20 years. The results obtained allowed the elaboration of a conceptual model of the long-term evolution of the Molise sector of the central-southern Apennines. Starting from the Pliocene, the emersion of the Molise area occurred gradually from SW to NE, allowing a polycyclic landscape to evolve under the major controls first of compression then transtensional to extensional tectonics as well as climatic variations. Principal markers of the Quaternary geomorphological evolution of the Molise area are represented by the infill successions of the intermontane tectonic depressions located in its internal, SW sector and by four orders of palaeosurfaces that developed between the Early Pleistocene and the beginning of the Late Pleistocene across the region. These markers testify to the alternation of phases of substantial tectonic stability and uplift whose spatial-temporal distribution could be assessed along the investigated transect. Results highlight that the most important stages of landscape evolution occurred during the Early and Middle Pleistocene. At the beginning of the Late Pleistocene, the Molise sector of the Apennine chain had already reached its present setting and further landscape evolution occurred under the major control of climate and land-use.

2020 ◽  
Author(s):  
Gilles Rixhon ◽  
Didier L. Bourlès ◽  
Régis Braucher ◽  
Alexandre Peeters ◽  
Alain Demoulin

<p>Multi-level cave systems record the history of regional river incision in abandoned alluvium-filled phreatic passages which, mimicking fluvial terrace sequences, represent former phases of fluvial base-level stability. In this respect, cosmogenic burial dating of in cave-deposited alluvium (usually via the nuclide pair <sup>26</sup>Al/<sup>10</sup>Be) represents a suitable method to quantify the pace of long-term river incision. Here, we present a dataset of fifteen <sup>26</sup>Al/<sup>10</sup>Be burial ages measured in fluvial pebbles washed into a multi-level cave system developed in Devonian limestone of the uplifted Ardenne massif (eastern Belgium). The large and well-documented Chawresse system is located along the lower Ourthe valley (i.e. the main Ardennian tributary of the Meuse river) and spans altogether an elevation difference exceeding 120 m.</p><p>The depleted <sup>26</sup>Al/<sup>10</sup>Be ratios measured in four individual caves show two main outcomes. Firstly, computed burial ages ranging from ~0.2 to 3.3 Ma allows highlighting an acceleration by almost one order of magnitude of the incision rates during the first half of the Middle Pleistocene (from ~25 to ~160 m/Ma). Secondly, according to the relative elevation above the present-day floodplain of the sampled material in the Manants cave (<35 m), the four internally-consistent Early Pleistocene burial ages highlight an “anomalous” old speleogenesis in the framework of a gradual base-level lowering. They instead point to intra-karsting reworking of the sampled material in the topographically complex Manants cave. This in turn suggests an independent, long-lasting speleogenetic evolution of this specific cave, which differs from the <em>per descensum</em> model of speleogenesis generally acknowledged for the regional multi-level cave systems and their abandoned phreatic galleries. In addition to its classical use for inferring long-term incision rates, cosmogenic burial dating can thus contribute to better understand specific and complex speleogenetic evolution.</p>


2017 ◽  
Vol 68 (1) ◽  
pp. 57-67 ◽  
Author(s):  
Marcello Schiattarella ◽  
Salvatore Ivo Giano ◽  
Dario Gioia

Abstract Uplift and erosion rates have been calculated for a large sector of the Campania-Lucania Apennine and Calabrian arc, Italy, using both geomorphological observations (elevations, ages and arrangement of depositional and erosional land surfaces and other morphotectonic markers) and stratigraphical and structural data (sea-level related facies, base levels, fault kinematics, and fault offset estimations). The values of the Quaternary uplift rates of the southern Apennines vary from 0.2 mm/yr to about 1.2–1.3 mm/yr. The erosion rates from key-areas of the southern Apennines, obtained from both quantitative geomorphic analysis and missing volumes calculations, has been estimated at 0.2 mm/yr since the Middle Pleistocene. Since the Late Pleistocene erosion and uplift rates match well, the axial-zone landscape could have reached a flux steady state during that time, although it is more probable that the entire study area may be a transient landscape. Tectonic denudation phenomena — leading to the exhumation of the Mesozoic core of the chain — followed by an impressive regional planation started in the Late Pliocene have to be taken into account for a coherent explanation of the morphological evolution of southern Italy.


2021 ◽  
Author(s):  
Parker Liautaud ◽  
Peter Huybers

<p><span>Foregoing studies have found that sea-level transitioned to becoming approximately twice as sensitive to CO</span><span><sub>2</sub></span><span> radiative forcing between the early and late Pleistocene (Chalk et al., 2017; Dyez et al., 2018). In this study we analyze the relationships among sea-level, orbital variations, and CO</span><span><sub>2</sub></span><span> observations in a time-dependent, zonally-averaged energy balance model having a simple ice sheet. Probability distributions for model parameters are inferred using a hierarchical Bayesian method representing model and data uncertainties, including those arising from uncertain geological age models. We find that well-established nonlinearities in the climate system can explain sea-level becoming 2.5x (2.1x - 4.5x) more sensitive to radiative forcing between 2 and 0 Ma. Denial-of-mechanism experiments show that the increase in sensitivity is diminished by 36% (31% - 39%) if omitting geometric effects associated with thickening of a larger ice sheet, by 81% (73% - 92%) if omitting the ice-albedo feedback, and by more than 96% (93% - 98%) if omitting both. We also show that prescribing a fixed sea-level age model leads to different inferences of ice-sheet dimension, planetary albedo, and lags in the response to radiative forcing than if using a more complete approach in which sea-level ages are jointly inferred with model physics. Consistency of the model ice-sheet with geologic constraints on the southern terminus of the Laurentide ice sheet can be obtained by prescribing lower basal shear stress during the early Pleistocene, but such more-expansive ice sheets imply lower CO</span><span><sub>2</sub></span><span> levels than would an ice-sheet having the same aspect ratio as in the late Pleistocene, exacerbating disagreements with </span><span>𝛿</span><span><sup>11</sup></span><span>B-derived CO</span><span><sub>2</sub></span><span> estimates. These results raise a number of possibilities, including that (1) geologic evidence for expansive early-Pleistocene ice sheets represents only intermittent and spatially-limited ice-margin advances, (2) </span><span>𝛿</span><span><sup>11</sup></span><span>B-derived CO</span><span><sub>2</sub></span><span> reconstructions are biased high, or (3) that another component of the global energy balance system, such as the average ice albedo or a process not included in our model, also changed through the middle Pleistocene. Future work will seek to better constrain early-Pleistocene CO</span><span><sub>2</sub></span><span> levels by way of a more complete incorporation of proxy uncertainties and biases into the Bayesian analysis.</span></p>


2021 ◽  
Author(s):  
Cristina Viani ◽  
Luigi Perotti ◽  
Federico Tognetto ◽  
Ilaria Selvaggio ◽  
Marco Giardino

<p>Geodiversity includes geological, geomorphological, hydrological and soil elements and processes. By analysing geodiversity we can offer static and dynamic views of abiotic landscapes on the Earth. The current state of geodiversity includes both relict, long-term features recalling the past of our planet earth and active landforms and processes whose monitoring is a key for interpreting relationships between geosphere, biosphere and human activities. If the long term geodiversity mainly represents distribution of litho-structural “static” constrains to environmental changes, recent and active environmental features may act as dynamic “proxies” for interpreting climate change.<br>Aim of this work is to analyse relevant examples of both static and dynamic geodiversity within the territory of the Sesia Val Grande UNESCO Global Geopark (Western Alps, Italy), in order to assess their role as georesources and to highlight possible sustainable use of related abiotic ecosystem services, including geoheritage. Geodiversity assessment has been performed by means of creation of geothematic maps and related factors analysed for better mountain environment understanding and management. <br>Starting with static geodiversity we collected, analysed and interpreted lithological and structural data in order to obtain information on distribution of georesources in the study area and to create a geothematic map on landscape resistance to erosion.<br>Thereafter we focused on two aspects related to dynamic geodiversity and their relationships with dramatic changes of the alpine landscape: glacial evolution and fluvial processes. On one hand, valley scale geomorphological evolution has been reconstructed by means of multitemporal data (e.g.: glacial landforms maps, glacier inventories) on evidences in the Sesia Valley. Obtained information crossed with national landslide inventory allowed to identify areas of strong glacial influence on slope stability (deep-seated gravitational slope deformation and landslides due to slope debutressing). Moreover, recent glacier withdrawal results in new glacier lakes increasing the hydrogeodiversity of the area and representing important potential georesources to be used. Finally, recent alluvial event (October 2020) has been considered for its high impact in reshaping fluvial environment and effects on both infrastructures and popular geosites along the Sesia river.<br>Results of this work are useful for the establishment of a proper Driver-Pressure-State-Impact-Response (DPSIR) framework related to environmental issues due to global change in order to support educational activities and sustainable development of alpine “tourism hubs” included in the Sesia Val Grande UNESCO Global Geopark by the “ArcticHubs” H2020-EU.3.5.1 project.</p>


Science ◽  
2020 ◽  
Vol 370 (6516) ◽  
pp. 584-587
Author(s):  
Dongju Zhang ◽  
Huan Xia ◽  
Fahu Chen ◽  
Bo Li ◽  
Viviane Slon ◽  
...  

A late Middle Pleistocene mandible from Baishiya Karst Cave (BKC) on the Tibetan Plateau has been inferred to be from a Denisovan, an Asian hominin related to Neanderthals, on the basis of an amino acid substitution in its collagen. Here we describe the stratigraphy, chronology, and mitochondrial DNA extracted from the sediments in BKC. We recover Denisovan mitochondrial DNA from sediments deposited ~100 thousand and ~60 thousand years ago (ka) and possibly as recently as ~45 ka. The long-term occupation of BKC by Denisovans suggests that they may have adapted to life at high altitudes and may have contributed such adaptations to modern humans on the Tibetan Plateau.


Geosciences ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 401
Author(s):  
Veronica Rossi ◽  
Alessandro Amorosi ◽  
Giulia Barbieri ◽  
Stefano Claudio Vaiani ◽  
Matteo Germano ◽  
...  

Understanding Quaternary dynamics of delta-coastal plains across multiple glacial-interglacial cycles in the Milankovitch band (~100 kyrs) is crucial to achieve a robust evaluation of possible environmental response to future climate-change scenarios. In this work, we document the long-term bio-sedimentary record of core 204 S16 (~205 m long), which covers a wide portion of the post-MPR (Mid-Pleistocene Revolution) interval, taking advantage of the highly subsiding context of the SE Po Plain (NE Italy). Detailed facies characterization through an integrated sedimentological and meiofauna (benthic foraminifers and ostracods) approach allowed for the identification of a repetitive pattern of alluvial deposits alternating with four fossiliferous, paralic to shallow-marine units (Units 1–4). The transgressive surfaces identified at the base of these units mark major flooding events, forced by Holocene (Unit 4), Late Pleistocene (Unit 3) and Middle Pleistocene (Units 1, 2) interglacials. Distinct stratigraphic patterns typify the Middle Pleistocene interval, which includes coastal-marine (tidal inlet and bay) deposits. In contrast, lagoonal sediments record the maximum marine influence in the Late Pleistocene-Holocene succession. As a whole, the meiofauna tracks a regressive trend, with the deepest conditions recorded by the oldest Unit 1 (MIS 9/11 age?).


2018 ◽  
Author(s):  
Johanna L.A. Paijmans ◽  
Axel Barlow ◽  
Daniel W. Förster ◽  
Kirstin Henneberger ◽  
Matthias Meyer ◽  
...  

AbstractBackgroundResolving the historical biogeography of the leopard(Panthera pardus)is a complex issue, because patterns inferred from fossils and from molecular data lack congruence. Fossil evidence supports an African origin, and suggests that leopards were already present in Eurasia during the Early Pleistocene. Analysis of DNA sequences however, suggests a more recent, Middle Pleistocene shared ancestry of Asian and African leopards. These contrasting patterns led researchers to propose a two-stage hypothesis of leopard dispersal out of Africa: an initial Early Pleistocene colonisation of Asia and a subsequent replacement by a second colonisation wave during the Middle Pleistocene. The status of Late Pleistocene European leopards within this scenario is unclear: were these populations remnants of the first dispersal, or do the last surviving European leopards share more recent ancestry with their African counterparts?ResultsIn this study, we generate and analyse mitogenome sequences from historical samples that span the entire modern leopard distribution, as well as from Late Pleistocene remains. We find a deep bifurcation between African and Eurasian mitochondrial lineages (∼710 Ka), with the European ancient samples as sister to all Asian lineages (∼483 Ka). The modern and historical mainland Asian lineages share a relatively recent common ancestor (∼122 Ka), and we find one Javan sample nested within these.ConclusionsThe phylogenetic placement of the ancient European leopard as sister group to Asian leopards suggests that these populations originate from the same out-of-Africa dispersal which founded the Asian lineages. The coalescence time found for the mitochondrial lineages aligns well with the earliest undisputed fossils in Eurasia, and thus encourages a re-evaluation of the identification of the much older putative leopard fossils from the region. The relatively recent ancestry of all mainland Asian leopard lineages suggests that these populations underwent a severe population bottleneck during the Pleistocene. Finally, although only based on a single sample, the unexpected phylogenetic placement of the Javan leopard could be interpreted as evidence for exchange of mitochondrial lineages between Java and mainland Asia, calling for further investigation into the evolutionary history of this subspecies.


1980 ◽  
Vol 13 (2) ◽  
pp. 213-229 ◽  
Author(s):  
Thomas M. Cronin

AbstractMarine ostracodes from 50 localities were studied to determine the age and elevation of Pleistocene sea levels in the Atlantic coastal plain from Maryland to northern Florida. Using ostracode taxon and concurrent ranges, published planktic biostratigraphic, paleomagnetic, and radiometric data, ostracode assemblage zones representing early (1.8-1.0 my), middle (0.7-0.4 my), and late (0.3-0.01 my) Pleistocene deposition were recognized and used as a basis for correlation. Ostracode biofacies signifying lagoonal, oyster bank, estuarine, open sound, and inner sublittoral environments provided estimated ranges of paleodepths for each locality. From these data the following minimum and maximum Pleistocene sea-level estimates were determined for the southeastern coastal plain: late Pleistocene, 2–10 m from Maryland to northern Florida; middle Pleistocene, 6–15 m in northern South Carolina; early Pleistocene, 4–22 m in central North Carolina, 13–35 m in southern North Carolina, and 6–27 m in South Carolina. Climatically induced glacio-eustatic sea-level fluctuations adequately account for the late Pleistocene sea-level data, but other factors, possibly differential crustal uplift, may have complicated the early Pleistocene record.


2007 ◽  
Vol 51 (3) ◽  
pp. 327-336 ◽  
Author(s):  
Colin A. Whiteman ◽  
James Rose

ABSTRACT This paper marks the centenary of the first of three articles by W.M. Davis on the beheading of the Thames, beginning with a statement of his capture hypothesis in 1895 and concluding with attempts to explain anomalous misfit streams in 1899 and 1909. It discusses Davis's classic thesis of river capture by slow, long-term landscape evolution and his apparent reluctance to accept the fact of rapid Quaternary climate change. In contrast, recent work based on lithostratigraphy, biostratigraphy and morphostratigraphy emphasises the dynamism of the Quaternary Period and its influence on river capture. Possible mechanisms for the beheading of the Thames, tectonism, glacial erosion and conventional Davisian river capture, and the timing of the event, are discussed. In conclusion, the paper summarises known and unknown components of the problem of the beheading of the Thames, and discusses the extent of Davis's influence on later Thames studies.


Sign in / Sign up

Export Citation Format

Share Document